#include <iostream>
#include <vector>
#include <sstream>
#include <iomanip>
#include <limits.h>
#include <stdlib.h>
typedef int ELEM_TYPE;
typedef long long PRODUCT_TYPE;
static const ELEM_TYPE BASE = 1000000000;
static const ELEM_TYPE UPPER_BOUND = 999999999;
static const ELEM_TYPE DIGIT_COUNT = 9;
static const int powersOfTen[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000 };
class InfInt
{
friend std::ostream& operator<<(std::ostream &s, const InfInt &n);
friend std::istream& operator>>(std::istream &s, InfInt &val);
public:
/* some constants */
static const InfInt zero;
static const InfInt one;
static const InfInt two;
/* constructors */
InfInt();
InfInt(const char* c);
InfInt(const std::string& s);
InfInt(int l);
InfInt(long l);
InfInt(long long l);
InfInt(unsigned int l);
InfInt(unsigned long l);
InfInt(unsigned long long l);
/* assignment operators */
const InfInt& operator=(const char* c);
const InfInt& operator=(const std::string& s);
const InfInt& operator=(int l);
const InfInt& operator=(long l);
const InfInt& operator=(long long l);
const InfInt& operator=(unsigned int l);
const InfInt& operator=(unsigned long l);
const InfInt& operator=(unsigned long long l);
/* unary increment/decrement operators */
const InfInt& operator++();
const InfInt& operator--();
InfInt operator++(int);
InfInt operator--(int);
/* operational assignments */
const InfInt& operator+=(const InfInt& rhs);
const InfInt& operator-=(const InfInt& rhs);
const InfInt& operator*=(const InfInt& rhs);
const InfInt& operator/=(const InfInt& rhs); // throw
const InfInt& operator%=(const InfInt& rhs); // throw
const InfInt& operator*=(ELEM_TYPE rhs);
/* operations */
InfInt operator-() const;
InfInt operator+(const InfInt& rhs) const;
InfInt operator-(const InfInt& rhs) const;
InfInt operator*(const InfInt& rhs) const;
InfInt operator/(const InfInt& rhs) const; // throw
InfInt operator%(const InfInt& rhs) const; // throw
InfInt operator*(ELEM_TYPE rhs) const;
/* relational operations */
bool operator==(const InfInt& rhs) const;
bool operator!=(const InfInt& rhs) const;
bool operator<(const InfInt& rhs) const;
bool operator<=(const InfInt& rhs) const;
bool operator>(const InfInt& rhs) const;
bool operator>=(const InfInt& rhs) const;
/* integer square root */
InfInt intSqrt() const; // throw
/* digit operations */
char digitAt(size_t i) const; // throw
size_t numberOfDigits() const;
/* size in bytes */
size_t size() const;
/* string conversion */
std::string toString() const;
/* conversion to primitive types */
int toInt() const; // throw
long toLong() const; // throw
long long toLongLong() const; // throw
unsigned int toUnsignedInt() const; // throw
unsigned long toUnsignedLong() const; // throw
unsigned long long toUnsignedLongLong() const; // throw
private:
static ELEM_TYPE dInR(const InfInt& R, const InfInt& D);
static void multiplyByDigit(ELEM_TYPE factor, std::vector<ELEM_TYPE>& val);
void correct(bool justCheckLeadingZeros = false, bool hasValidSign = false);
void fromString(const std::string& s);
void optimizeSqrtSearchBounds(InfInt& lo, InfInt& hi) const;
void truncateToBase();
bool equalizeSigns();
void removeLeadingZeros();
std::vector<ELEM_TYPE> val; // number with base FACTOR
bool pos; // true if number is positive
};
const InfInt InfInt::zero = 0;
const InfInt InfInt::one = 1;
const InfInt InfInt::two = 2;
inline InfInt::InfInt() : pos(true)
{
val.push_back((ELEM_TYPE) 0);
}
inline InfInt::InfInt(const char* c)
{
fromString(c);
}
inline InfInt::InfInt(const std::string& s)
{
fromString(s);
}
inline InfInt::InfInt(int l) : pos(l >= 0)
{
if (!pos)
{
l = -l;
}
do
{
div_t dt = div(l, BASE);
val.push_back((ELEM_TYPE) dt.rem);
l = dt.quot;
} while (l > 0);
}
inline InfInt::InfInt(long l) : pos(l >= 0)
{
if (!pos)
{
l = -l;
}
do
{
ldiv_t dt = ldiv(l, BASE);
val.push_back((ELEM_TYPE) dt.rem);
l = dt.quot;
} while (l > 0);
}
inline InfInt::InfInt(long long l) : pos(l >= 0)
{
if (!pos)
{
l = -l;
}
do
{
val.push_back((ELEM_TYPE) (l % BASE));
l = l / BASE;
} while (l > 0);
}
inline InfInt::InfInt(unsigned int l) : pos(true)
{
do
{
val.push_back((ELEM_TYPE) (l % BASE));
l = l / BASE;
} while (l > 0);
}
inline InfInt::InfInt(unsigned long l) : pos(true)
{
do
{
val.push_back((ELEM_TYPE) (l % BASE));
l = l / BASE;
} while (l > 0);
}
inline InfInt::InfInt(unsigned long long l) : pos(true)
{
do
{
val.push_back((ELEM_TYPE) (l % BASE));
l = l / BASE;
} while (l > 0);
}
inline const InfInt& InfInt::operator=(const char* c)
{
fromString(c);
return *this;
}
inline const InfInt& InfInt::operator=(const std::string& s)
{
fromString(s);
return *this;
}
inline const InfInt& InfInt::operator=(int l)
{
pos = l >= 0;
val.clear();
if (!pos)
{
l = -l;
}
do
{
div_t dt = div(l, BASE);
val.push_back((ELEM_TYPE) dt.rem);
l = dt.quot;
} while (l > 0);
return *this;
}
inline const InfInt& InfInt::operator=(long l)
{
pos = l >= 0;
val.clear();
if (!pos)
{
l = -l;
}
do
{
ldiv_t dt = ldiv(l, BASE);
val.push_back((ELEM_TYPE) dt.rem);
l = dt.quot;
} while (l > 0);
return *this;
}
inline const InfInt& InfInt::operator=(long long l)
{
pos = l >= 0;
val.clear();
if (!pos)
{
l = -l;
}
do
{
val.push_back((ELEM_TYPE) (l % BASE));
l = l / BASE;
} while (l > 0);
return *this;
}
inline const InfInt& InfInt::operator=(unsigned int l)
{
pos = true;
val.clear();
do
{
val.push_back((ELEM_TYPE) (l % BASE));
l = l / BASE;
} while (l > 0);
return *this;
}
inline const InfInt& InfInt::operator=(unsigned long l)
{
pos = true;
val.clear();
do
{
val.push_back((ELEM_TYPE) (l % BASE));
l = l / BASE;
} while (l > 0);
return *this;
}
inline const InfInt& InfInt::operator=(unsigned long long l)
{
pos = true;
val.clear();
do
{
val.push_back((ELEM_TYPE) (l % BASE));
l = l / BASE;
} while (l > 0);
return *this;
}
inline const InfInt& InfInt::operator++()
{
val[0] += (pos ? 1 : -1);
this->correct(false, true);
return *this;
}
inline const InfInt& InfInt::operator--()
{
val[0] -= (pos ? 1 : -1);
this->correct(false, true);
return *this;
}
inline InfInt InfInt::operator++(int)
{
InfInt result = *this;
val[0] += (pos ? 1 : -1);
this->correct(false, true);
return result;
}
inline InfInt InfInt::operator--(int)
{
InfInt result = *this;
val[0] -= (pos ? 1 : -1);
this->correct(false, true);
return result;
}
inline const InfInt& InfInt::operator+=(const InfInt& rhs)
{
if (rhs.val.size() > val.size())
{
val.resize(rhs.val.size(), 0);
}
for (size_t i = 0; i < val.size(); ++i)
{
val[i] = (pos ? val[i] : -val[i]) + (i < rhs.val.size() ? (rhs.pos ? rhs.val[i] : -rhs.val[i]) : 0);
}
correct();
return *this;
}
inline const InfInt& InfInt::operator-=(const InfInt& rhs)
{
if (rhs.val.size() > val.size())
{
val.resize(rhs.val.size(), 0);
}
for (size_t i = 0; i < val.size(); ++i)
{
val[i] = (pos ? val[i] : -val[i]) - (i < rhs.val.size() ? (rhs.pos ? rhs.val[i] : -rhs.val[i]) : 0);
}
correct();
return *this;
}
inline const InfInt& InfInt::operator*=(const InfInt& rhs)
{
// TODO: optimize (do not use operator*)
*this = *this * rhs;
return *this;
}
inline const InfInt& InfInt::operator/=(const InfInt& rhs)
{
if (rhs == zero)
{
std::cerr << "Division by zero!" << std::endl;
return *this;
}
InfInt R, D = (rhs.pos ? rhs : -rhs), N = (pos ? *this : -*this);
bool oldpos = pos;
val.clear();
val.resize(N.val.size(), 0);
for (int i = (int) N.val.size() - 1; i >= 0; --i)
{
R.val.insert(R.val.begin(), (ELEM_TYPE) 0);
R.val[0] = N.val[i];
R.correct(true);
ELEM_TYPE cnt = dInR(R, D);
R -= D * cnt;
val[i] += cnt;
}
correct();
pos = (val.size() == 1 && val[0] == 0) ? true : (oldpos == rhs.pos);
return *this;
}
inline const InfInt& InfInt::operator%=(const InfInt& rhs)
{
if (rhs == zero)
{
std::cerr << "Division by zero!" << std::endl;
return zero;
}
InfInt D = (rhs.pos ? rhs : -rhs), N = (pos ? *this : -*this);
bool oldpos = pos;
val.clear();
for (int i = (int) N.val.size() - 1; i >= 0; --i)
{
val.insert(val.begin(), (ELEM_TYPE) 0);
val[0] = N.val[i];
correct(true);
*this -= D * dInR(*this, D);
}
correct();
pos = (val.size() == 1 && val[0] == 0) ? true : oldpos;
return *this;
}
inline const InfInt& InfInt::operator*=(ELEM_TYPE rhs)
{
ELEM_TYPE factor = rhs < 0 ? -rhs : rhs;
bool oldpos = pos;
multiplyByDigit(factor, val);
correct();
pos = (val.size() == 1 && val[0] == 0) ? true : (oldpos == (rhs >= 0));
return *this;
}
inline InfInt InfInt::operator-() const
{//PROFILED_SCOPE
InfInt result = *this;
result.pos = !pos;
return result;
}
inline InfInt InfInt::operator+(const InfInt& rhs) const
{//PROFILED_SCOPE
InfInt result;
result.val.resize(val.size() > rhs.val.size() ? val.size() : rhs.val.size(), 0);
for (size_t i = 0; i < val.size() || i < rhs.val.size(); ++i)
{
result.val[i] = (i < val.size() ? (pos ? val[i] : -val[i]) : 0) + (i < rhs.val.size() ? (rhs.pos ? rhs.val[i] : -rhs.val[i]) : 0);
}
result.correct();
return result;
}
inline InfInt InfInt::operator-(const InfInt& rhs) const
{//PROFILED_SCOPE
InfInt result;
result.val.resize(val.size() > rhs.val.size() ? val.size() : rhs.val.size(), 0);
for (size_t i = 0; i < val.size() || i < rhs.val.size(); ++i)
{
result.val[i] = (i < val.size() ? (pos ? val[i] : -val[i]) : 0) - (i < rhs.val.size() ? (rhs.pos ? rhs.val[i] : -rhs.val[i]) : 0);
}
result.correct();
return result;
}
inline InfInt InfInt::operator*(const InfInt& rhs) const
{//PROFILED_SCOPE
InfInt result;
result.val.resize(val.size() + rhs.val.size(), 0);
PRODUCT_TYPE carry = 0;
size_t digit = 0;
for (;; ++digit)
{//PROFILED_SCOPE
//result.val[digit] = (ELEM_TYPE) (carry % BASE);
//carry /= BASE;
PRODUCT_TYPE oldcarry = carry;
carry /= BASE;
result.val[digit] = (ELEM_TYPE) (oldcarry - carry * BASE);
bool found = false;
for (size_t i = digit < rhs.val.size() ? 0 : digit - rhs.val.size() + 1; i < val.size() && i <= digit; ++i)
{//PROFILED_SCOPE
PRODUCT_TYPE pval = result.val[digit] + val[i] * (PRODUCT_TYPE) rhs.val[digit - i];
if (pval >= BASE || pval <= -BASE)
{//PROFILED_SCOPE
//carry += pval / BASE;
//pval %= BASE;
PRODUCT_TYPE quot = pval / BASE;
carry += quot;
pval -= quot * BASE;
}
result.val[digit] = (ELEM_TYPE) pval;
found = true;
}
if (!found)
{//PROFILED_SCOPE
break;
}
}
for (; carry > 0; ++digit)
{//PROFILED_SCOPE
result.val[digit] = (ELEM_TYPE) (carry % BASE);
carry /= BASE;
}
result.correct();
result.pos = (result.val.size() == 1 && result.val[0] == 0) ? true : (pos == rhs.pos);
return result;
}
inline InfInt InfInt::operator/(const InfInt& rhs) const
{//PROFILED_SCOPE
if (rhs == zero)
{
std::cerr << "Division by zero!" << std::endl;
return zero;
}
InfInt Q, R, D = (rhs.pos ? rhs : -rhs), N = (pos ? *this : -*this);
Q.val.resize(N.val.size(), 0);
for (int i = (int) N.val.size() - 1; i >= 0; --i)
{//PROFILED_SCOPE
R.val.insert(R.val.begin(), (ELEM_TYPE) 0);
R.val[0] = N.val[i];
R.correct(true);
ELEM_TYPE cnt = dInR(R, D);
R -= D * cnt;
Q.val[i] += cnt;
}
Q.correct();
Q.pos = (Q.val.size() == 1 && Q.val[0] == 0) ? true : (pos == rhs.pos);
return Q;
}
inline InfInt InfInt::operator%(const InfInt& rhs) const
{//PROFILED_SCOPE
if (rhs == zero)
{
std::cerr << "Division by zero!" << std::endl;
return zero;
}
InfInt R, D = (rhs.pos ? rhs : -rhs), N = (pos ? *this : -*this);
for (int i = (int) N.val.size() - 1; i >= 0; --i)
{
R.val.insert(R.val.begin(), (ELEM_TYPE) 0);
R.val[0] = N.val[i];
R.correct(true);
R -= D * dInR(R, D);
}
R.correct();
R.pos = (R.val.size() == 1 && R.val[0] == 0) ? true : pos;
return R;
}
inline InfInt InfInt::operator*(ELEM_TYPE rhs) const
{//PROFILED_SCOPE
InfInt result = *this;
ELEM_TYPE factor = rhs < 0 ? -rhs : rhs;
multiplyByDigit(factor, result.val);
result.correct();
result.pos = (result.val.size() == 1 && result.val[0] == 0) ? true : (pos == (rhs >= 0));
return result;
}
inline bool InfInt::operator==(const InfInt& rhs) const
{//PROFILED_SCOPE
if (pos != rhs.pos || val.size() != rhs.val.size())
{
return false;
}
for (int i = (int) val.size() - 1; i >= 0; --i)
{
if (val[i] != rhs.val[i])
{
return false;
}
}
return true;
}
inline bool InfInt::operator!=(const InfInt& rhs) const
{//PROFILED_SCOPE
if (pos != rhs.pos || val.size() != rhs.val.size())
{
return true;
}
for (int i = (int) val.size() - 1; i >= 0; --i)
{
if (val[i] != rhs.val[i])
{
return true;
}
}
return false;
}
inline bool InfInt::operator<(const InfInt& rhs) const
{//PROFILED_SCOPE
if (pos && !rhs.pos)
{
return false;
}
if (!pos && rhs.pos)
{
return true;
}
if (val.size() > rhs.val.size())
{
return pos ? false : true;
}
if (val.size() < rhs.val.size())
{
return pos ? true : false;
}
for (int i = (int) val.size() - 1; i >= 0; --i)
{
if (val[i] < rhs.val[i])
{
return pos ? true : false;
}
if (val[i] > rhs.val[i])
{
return pos ? false : true;
}
}
return false;
}
inline bool InfInt::operator<=(const InfInt& rhs) const
{//PROFILED_SCOPE
if (pos && !rhs.pos)
{
return false;
}
if (!pos && rhs.pos)
{
return true;
}
if (val.size() > rhs.val.size())
{
return pos ? false : true;
}
if (val.size() < rhs.val.size())
{
return pos ? true : false;
}
for (int i = (int) val.size() - 1; i >= 0; --i)
{
if (val[i] < rhs.val[i])
{
return pos ? true : false;
}
if (val[i] > rhs.val[i])
{
return pos ? false : true;
}
}
return true;
}
inline bool InfInt::operator>(const InfInt& rhs) const
{//PROFILED_SCOPE
if (pos && !rhs.pos)
{
return true;
}
if (!pos && rhs.pos)
{
return false;
}
if (val.size() > rhs.val.size())
{
return pos ? true : false;
}
if (val.size() < rhs.val.size())
{
return pos ? false : true;
}
for (int i = (int) val.size() - 1; i >= 0; --i)
{
if (val[i] < rhs.val[i])
{
return pos ? false : true;
}
if (val[i] > rhs.val[i])
{
return pos ? true : false;
}
}
return false;
}
inline bool InfInt::operator>=(const InfInt& rhs) const
{//PROFILED_SCOPE
if (pos && !rhs.pos)
{
return true;
}
if (!pos && rhs.pos)
{
return false;
}
if (val.size() > rhs.val.size())
{
return pos ? true : false;
}
if (val.size() < rhs.val.size())
{
return pos ? false : true;
}
for (int i = (int) val.size() - 1; i >= 0; --i)
{
if (val[i] < rhs.val[i])
{
return pos ? false : true;
}
if (val[i] > rhs.val[i])
{
return pos ? true : false;
}
}
return true;
}
inline void InfInt::optimizeSqrtSearchBounds(InfInt& lo, InfInt& hi) const
{//PROFILED_SCOPE
InfInt hdn = one;
for (int i = (int) this->numberOfDigits() / 2; i >= 2; --i)
{
hdn *= 10;
}
if (lo < hdn)
{
lo = hdn;
}
hdn *= 100;
if (hi > hdn)
{
hi = hdn;
}
}
inline InfInt InfInt::intSqrt() const
{//PROFILED_SCOPE
if (*this <= zero)
{
std::cerr << "intSqrt called for non-positive integer: " << *this << std::endl;
return zero;
}
InfInt hi = *this / two + one, lo = zero, mid, mid2;
optimizeSqrtSearchBounds(lo, hi);
do
{
mid = (hi + lo) / two; // 8 factor
mid2 = mid * mid; // 1 factor
if (mid2 == *this)
{
lo = mid;
break;
}
else if (mid2 < *this)
{
lo = mid;
}
else
{
hi = mid;
}
} while (lo < hi - one && mid2 != *this);
return lo;
}
inline char InfInt::digitAt(size_t i) const
{//PROFILED_SCOPE
if (numberOfDigits() <= i)
{
std::cerr << "Invalid digit index: " << i << std::endl;
return -1;
}
return (val[i / DIGIT_COUNT] / powersOfTen[i % DIGIT_COUNT]) % 10;
}
inline size_t InfInt::numberOfDigits() const
{//PROFILED_SCOPE
return (val.size() - 1) * DIGIT_COUNT
+ (val.back() > 99999999 ? 9 : (val.back() > 9999999 ? 8 : (val.back() > 999999 ? 7 : (val.back() > 99999 ? 6 :
(val.back() > 9999 ? 5 : (val.back() > 999 ? 4 : (val.back() > 99 ? 3 : (val.back() > 9 ? 2 : 1))))))));
}
inline std::string InfInt::toString() const
{//PROFILED_SCOPE
std::ostringstream oss;
oss << *this;
return oss.str();
}
inline size_t InfInt::size() const
{//PROFILED_SCOPE
return val.size() * sizeof(ELEM_TYPE) + sizeof(bool);
}
inline int InfInt::toInt() const
{//PROFILED_SCOPE
if (*this > INT_MAX || *this < INT_MIN)
std::cerr << "Out of INT bounds: " << *this << std::endl;
int result = 0;
for (int i = (int) val.size() - 1; i >= 0; --i)
{
result = result * BASE + val[i];
}
return pos ? result : -result;
}
inline long InfInt::toLong() const
{//PROFILED_SCOPE
if (*this > LONG_MAX || *this < LONG_MIN)
std::cerr << "Out of LONG bounds: " << *this << std::endl;
long result = 0;
for (int i = (int) val.size() - 1; i >= 0; --i)
{
result = result * BASE + val[i];
}
return pos ? result : -result;
}
inline long long InfInt::toLongLong() const
{//PROFILED_SCOPE
if (*this > LONG_LONG_MAX || *this < LONG_LONG_MIN)
std::cerr << "Out of LLONG bounds: " << *this << std::endl;
long long result = 0;
for (int i = (int) val.size() - 1; i >= 0; --i)
{
result = result * BASE + val[i];
}
return pos ? result : -result;
}
inline unsigned int InfInt::toUnsignedInt() const
{//PROFILED_SCOPE
if (!pos || *this > UINT_MAX)
std::cerr << "Out of UINT bounds: " << *this << std::endl;
unsigned int result = 0;
for (int i = (int) val.size() - 1; i >= 0; --i)
{
result = result * BASE + val[i];
}
return result;
}
inline unsigned long InfInt::toUnsignedLong() const
{//PROFILED_SCOPE
if (!pos || *this > ULONG_MAX)
std::cerr << "Out of ULONG bounds: " << *this << std::endl;
unsigned long result = 0;
for (int i = (int) val.size() - 1; i >= 0; --i)
{
result = result * BASE + val[i];
}
return result;
}
inline unsigned long long InfInt::toUnsignedLongLong() const
{//PROFILED_SCOPE
if (!pos || *this > ULONG_LONG_MAX)
std::cerr << "Out of ULLONG bounds: " << *this << std::endl;
unsigned long long result = 0;
for (int i = (int) val.size() - 1; i >= 0; --i)
{
result = result * BASE + val[i];
}
return result;
}
inline void InfInt::truncateToBase()
{//PROFILED_SCOPE
for (size_t i = 0; i < val.size(); ++i) // truncate each
{
if (val[i] >= BASE || val[i] <= -BASE)
{//PROFILED_SCOPE
div_t dt = div(val[i], BASE);
val[i] = dt.rem;
if (i + 1 >= val.size())
{//PROFILED_SCOPE
val.push_back(dt.quot);
}
else
{//PROFILED_SCOPE
val[i + 1] += dt.quot;
}
}
}
}
inline bool InfInt::equalizeSigns()
{//PROFILED_SCOPE
bool isPositive = true;
int i = (int) ((val.size())) - 1;
for (; i >= 0; --i)
{
if (val[i] != 0)
{
isPositive = val[i--] > 0;
break;
}
}
if (isPositive)
{
for (; i >= 0; --i)
{
if (val[i] < 0)
{
int k = 0, index = i + 1;
for (; (size_t)(index) < val.size() && val[index] == 0; ++k, ++index); // count adjacent zeros on left
//if ((size_t)(index) < val.size() && val[index] > 0)
{ // number on the left is positive
val[index] -= 1;
val[i] += BASE;
for (; k > 0; --k)
{
val[i + k] = UPPER_BOUND;
}
}
}
}
}
else
{
for (; i >= 0; --i)
{
if (val[i] > 0)
{
int k = 0, index = i + 1;
for (; (size_t)(index) < val.size() && val[index] == 0; ++k, ++index); // count adjacent zeros on right
//if ((size_t)(index) < val.size() && val[index] < 0)
{ // number on the left is negative
val[index] += 1;
val[i] -= BASE;
for (; k > 0; --k)
{
val[i + k] = -UPPER_BOUND;
}
}
}
}
}
return isPositive;
}
inline void InfInt::removeLeadingZeros()
{//PROFILED_SCOPE
for (int i = (int) (val.size()) - 1; i > 0; --i) // remove leading 0's
{
if (val[i] != 0)
{
return;
}
else
{
val.erase(val.begin() + i);
}
}
}
inline void InfInt::correct(bool justCheckLeadingZeros, bool hasValidSign)
{//PROFILED_SCOPE
if (!justCheckLeadingZeros)
{
truncateToBase();
if (equalizeSigns())
{
pos = ((val.size() == 1 && val[0] == 0) || !hasValidSign) ? true : pos;
}
else
{
pos = hasValidSign ? !pos : false;
for (size_t i = 0; i < val.size(); ++i)
{
val[i] = abs(val[i]);
}
}
}
removeLeadingZeros();
}
inline void InfInt::fromString(const std::string& s)
{//PROFILED_SCOPE
pos = true;
val.clear();
// TODO use resize
val.reserve(s.size() / DIGIT_COUNT + 1);
int i = (int) s.size() - DIGIT_COUNT;
for (; i >= 0; i -= DIGIT_COUNT)
{
val.push_back(atoi(s.substr(i, DIGIT_COUNT).c_str()));
}
if (i > -DIGIT_COUNT)
{
std::string ss = s.substr(0, i + DIGIT_COUNT);
if (ss.size() == 1 && ss[0] == '-')
{
pos = false;
}
else
{
val.push_back(atoi(ss.c_str()));
}
}
if (val.back() < 0)
{
val.back() = -val.back();
pos = false;
}
correct(true);
}
inline ELEM_TYPE InfInt::dInR(const InfInt& R, const InfInt& D)
{//PROFILED_SCOPE
ELEM_TYPE min = 0, max = UPPER_BOUND;
while (max - min > 0)
{
ELEM_TYPE avg = max + min;
//div_t dt = div(avg, 2);
//avg = dt.rem ? (dt.quot + 1) : dt.quot;
ELEM_TYPE havg = avg / 2;
avg = (avg - havg * 2) ? (havg + 1) : havg;
InfInt prod = D * avg;
if (R == prod)
{//PROFILED_SCOPE
return avg;
}
else if (R > prod)
{//PROFILED_SCOPE
min = avg;
}
else
{//PROFILED_SCOPE
max = avg - 1;
}
}
return min;
}
inline void InfInt::multiplyByDigit(ELEM_TYPE factor, std::vector<ELEM_TYPE>& val)
{//PROFILED_SCOPE
ELEM_TYPE carry = 0;
for (size_t i = 0; i < val.size(); ++i)
{
PRODUCT_TYPE pval = val[i] * (PRODUCT_TYPE) factor + carry;
if (pval >= BASE || pval <= -BASE)
{
//carry = (ELEM_TYPE) (pval / BASE);
//pval %= BASE;
carry = (ELEM_TYPE) (pval / BASE);
pval -= carry * BASE;
}
else
{
carry = 0;
}
val[i] = (ELEM_TYPE) pval;
}
if (carry > 0)
{
val.push_back(carry);
}
}
/**************************************************************/
/******************** NON-MEMBER OPERATORS ********************/
/**************************************************************/
inline std::istream& operator>>(std::istream &s, InfInt &n)
{//PROFILED_SCOPE
std::string str;
s >> str;
n.fromString(str);
return s;
}
inline std::ostream& operator<<(std::ostream &s, const InfInt &n)
{//PROFILED_SCOPE
if (!n.pos)
{
s << '-';
}
bool first = true;
for (int i = (int) n.val.size() - 1; i >= 0; --i)
{
if (first)
{
s << n.val[i];
first = false;
}
else
{
s << std::setfill('0') << std::setw(DIGIT_COUNT) << n.val[i];
}
}
return s;
}
using namespace std;
int main(){
int a;
cin >> a;
InfInt x = 1, kg;
for (int cont = 0; cont < a; cont++) {
x *= 2;
}
kg = x / 12000;
cout << kg << " kg\n";
}