fork download
  1. /*
  2.  * A JavaScript implementation of the Secure Hash Algorithm, SHA-256, as defined
  3.  * in FIPS 180-2
  4.  * Version 2.2 Copyright Angel Marin, Paul Johnston 2000 - 2009.
  5.  * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
  6.  * Distributed under the BSD License
  7.  * See http://p...content-available-to-author-only...g.uk/crypt/md5 for details.
  8.  * Also http://a...content-available-to-author-only...u.org/projects/jssha2/
  9.  */
  10.  
  11. /*
  12.  * Configurable variables. You may need to tweak these to be compatible with
  13.  * the server-side, but the defaults work in most cases.
  14.  */
  15. var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */
  16. var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */
  17.  
  18. /*
  19.  * These are the functions you'll usually want to call
  20.  * They take string arguments and return either hex or base-64 encoded strings
  21.  */
  22. function hex_sha256(s) { return rstr2hex(rstr_sha256(str2rstr_utf8(s))); }
  23. function b64_sha256(s) { return rstr2b64(rstr_sha256(str2rstr_utf8(s))); }
  24. function any_sha256(s, e) { return rstr2any(rstr_sha256(str2rstr_utf8(s)), e); }
  25. function hex_hmac_sha256(k, d)
  26. { return rstr2hex(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); }
  27. function b64_hmac_sha256(k, d)
  28. { return rstr2b64(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); }
  29. function any_hmac_sha256(k, d, e)
  30. { return rstr2any(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d)), e); }
  31.  
  32. /*
  33.  * Perform a simple self-test to see if the VM is working
  34.  */
  35. function sha256_vm_test()
  36. {
  37. return hex_sha256("abc").toLowerCase() ==
  38. "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad";
  39. }
  40.  
  41. /*
  42.  * Calculate the sha256 of a raw string
  43.  */
  44. function rstr_sha256(s)
  45. {
  46. return binb2rstr(binb_sha256(rstr2binb(s), s.length * 8));
  47. }
  48.  
  49. /*
  50.  * Calculate the HMAC-sha256 of a key and some data (raw strings)
  51.  */
  52. function rstr_hmac_sha256(key, data)
  53. {
  54. var bkey = rstr2binb(key);
  55. if(bkey.length > 16) bkey = binb_sha256(bkey, key.length * 8);
  56.  
  57. var ipad = Array(16), opad = Array(16);
  58. for(var i = 0; i < 16; i++)
  59. {
  60. ipad[i] = bkey[i] ^ 0x36363636;
  61. opad[i] = bkey[i] ^ 0x5C5C5C5C;
  62. }
  63.  
  64. var hash = binb_sha256(ipad.concat(rstr2binb(data)), 512 + data.length * 8);
  65. return binb2rstr(binb_sha256(opad.concat(hash), 512 + 256));
  66. }
  67.  
  68. /*
  69.  * Convert a raw string to a hex string
  70.  */
  71. function rstr2hex(input)
  72. {
  73. try { hexcase } catch(e) { hexcase=0; }
  74. var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
  75. var output = "";
  76. var x;
  77. for(var i = 0; i < input.length; i++)
  78. {
  79. x = input.charCodeAt(i);
  80. output += hex_tab.charAt((x >>> 4) & 0x0F)
  81. + hex_tab.charAt( x & 0x0F);
  82. }
  83. return output;
  84. }
  85.  
  86. /*
  87.  * Convert a raw string to a base-64 string
  88.  */
  89. function rstr2b64(input)
  90. {
  91. try { b64pad } catch(e) { b64pad=''; }
  92. var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
  93. var output = "";
  94. var len = input.length;
  95. for(var i = 0; i < len; i += 3)
  96. {
  97. var triplet = (input.charCodeAt(i) << 16)
  98. | (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
  99. | (i + 2 < len ? input.charCodeAt(i+2) : 0);
  100. for(var j = 0; j < 4; j++)
  101. {
  102. if(i * 8 + j * 6 > input.length * 8) output += b64pad;
  103. else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
  104. }
  105. }
  106. return output;
  107. }
  108.  
  109. /*
  110.  * Convert a raw string to an arbitrary string encoding
  111.  */
  112. function rstr2any(input, encoding)
  113. {
  114. var divisor = encoding.length;
  115. var remainders = Array();
  116. var i, q, x, quotient;
  117.  
  118. /* Convert to an array of 16-bit big-endian values, forming the dividend */
  119. var dividend = Array(Math.ceil(input.length / 2));
  120. for(i = 0; i < dividend.length; i++)
  121. {
  122. dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
  123. }
  124.  
  125. /*
  126.   * Repeatedly perform a long division. The binary array forms the dividend,
  127.   * the length of the encoding is the divisor. Once computed, the quotient
  128.   * forms the dividend for the next step. We stop when the dividend is zero.
  129.   * All remainders are stored for later use.
  130.   */
  131. while(dividend.length > 0)
  132. {
  133. quotient = Array();
  134. x = 0;
  135. for(i = 0; i < dividend.length; i++)
  136. {
  137. x = (x << 16) + dividend[i];
  138. q = Math.floor(x / divisor);
  139. x -= q * divisor;
  140. if(quotient.length > 0 || q > 0)
  141. quotient[quotient.length] = q;
  142. }
  143. remainders[remainders.length] = x;
  144. dividend = quotient;
  145. }
  146.  
  147. /* Convert the remainders to the output string */
  148. var output = "";
  149. for(i = remainders.length - 1; i >= 0; i--)
  150. output += encoding.charAt(remainders[i]);
  151.  
  152. /* Append leading zero equivalents */
  153. var full_length = Math.ceil(input.length * 8 /
  154. (Math.log(encoding.length) / Math.log(2)))
  155. for(i = output.length; i < full_length; i++)
  156. output = encoding[0] + output;
  157.  
  158. return output;
  159. }
  160.  
  161. /*
  162.  * Encode a string as utf-8.
  163.  * For efficiency, this assumes the input is valid utf-16.
  164.  */
  165. function str2rstr_utf8(input)
  166. {
  167. var output = "";
  168. var i = -1;
  169. var x, y;
  170.  
  171. while(++i < input.length)
  172. {
  173. /* Decode utf-16 surrogate pairs */
  174. x = input.charCodeAt(i);
  175. y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
  176. if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
  177. {
  178. x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
  179. i++;
  180. }
  181.  
  182. /* Encode output as utf-8 */
  183. if(x <= 0x7F)
  184. output += String.fromCharCode(x);
  185. else if(x <= 0x7FF)
  186. output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
  187. 0x80 | ( x & 0x3F));
  188. else if(x <= 0xFFFF)
  189. output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
  190. 0x80 | ((x >>> 6 ) & 0x3F),
  191. 0x80 | ( x & 0x3F));
  192. else if(x <= 0x1FFFFF)
  193. output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
  194. 0x80 | ((x >>> 12) & 0x3F),
  195. 0x80 | ((x >>> 6 ) & 0x3F),
  196. 0x80 | ( x & 0x3F));
  197. }
  198. return output;
  199. }
  200.  
  201. /*
  202.  * Encode a string as utf-16
  203.  */
  204. function str2rstr_utf16le(input)
  205. {
  206. var output = "";
  207. for(var i = 0; i < input.length; i++)
  208. output += String.fromCharCode( input.charCodeAt(i) & 0xFF,
  209. (input.charCodeAt(i) >>> 8) & 0xFF);
  210. return output;
  211. }
  212.  
  213. function str2rstr_utf16be(input)
  214. {
  215. var output = "";
  216. for(var i = 0; i < input.length; i++)
  217. output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
  218. input.charCodeAt(i) & 0xFF);
  219. return output;
  220. }
  221.  
  222. /*
  223.  * Convert a raw string to an array of big-endian words
  224.  * Characters >255 have their high-byte silently ignored.
  225.  */
  226. function rstr2binb(input)
  227. {
  228. var output = Array(input.length >> 2);
  229. for(var i = 0; i < output.length; i++)
  230. output[i] = 0;
  231. for(var i = 0; i < input.length * 8; i += 8)
  232. output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
  233. return output;
  234. }
  235.  
  236. /*
  237.  * Convert an array of big-endian words to a string
  238.  */
  239. function binb2rstr(input)
  240. {
  241. var output = "";
  242. for(var i = 0; i < input.length * 32; i += 8)
  243. output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
  244. return output;
  245. }
  246.  
  247. /*
  248.  * Main sha256 function, with its support functions
  249.  */
  250. function sha256_S (X, n) {return ( X >>> n ) | (X << (32 - n));}
  251. function sha256_R (X, n) {return ( X >>> n );}
  252. function sha256_Ch(x, y, z) {return ((x & y) ^ ((~x) & z));}
  253. function sha256_Maj(x, y, z) {return ((x & y) ^ (x & z) ^ (y & z));}
  254. function sha256_Sigma0256(x) {return (sha256_S(x, 2) ^ sha256_S(x, 13) ^ sha256_S(x, 22));}
  255. function sha256_Sigma1256(x) {return (sha256_S(x, 6) ^ sha256_S(x, 11) ^ sha256_S(x, 25));}
  256. function sha256_Gamma0256(x) {return (sha256_S(x, 7) ^ sha256_S(x, 18) ^ sha256_R(x, 3));}
  257. function sha256_Gamma1256(x) {return (sha256_S(x, 17) ^ sha256_S(x, 19) ^ sha256_R(x, 10));}
  258. function sha256_Sigma0512(x) {return (sha256_S(x, 28) ^ sha256_S(x, 34) ^ sha256_S(x, 39));}
  259. function sha256_Sigma1512(x) {return (sha256_S(x, 14) ^ sha256_S(x, 18) ^ sha256_S(x, 41));}
  260. function sha256_Gamma0512(x) {return (sha256_S(x, 1) ^ sha256_S(x, 8) ^ sha256_R(x, 7));}
  261. function sha256_Gamma1512(x) {return (sha256_S(x, 19) ^ sha256_S(x, 61) ^ sha256_R(x, 6));}
  262.  
  263. var sha256_K = new Array
  264. (
  265. 1116352408, 1899447441, -1245643825, -373957723, 961987163, 1508970993,
  266. -1841331548, -1424204075, -670586216, 310598401, 607225278, 1426881987,
  267. 1925078388, -2132889090, -1680079193, -1046744716, -459576895, -272742522,
  268. 264347078, 604807628, 770255983, 1249150122, 1555081692, 1996064986,
  269. -1740746414, -1473132947, -1341970488, -1084653625, -958395405, -710438585,
  270. 113926993, 338241895, 666307205, 773529912, 1294757372, 1396182291,
  271. 1695183700, 1986661051, -2117940946, -1838011259, -1564481375, -1474664885,
  272. -1035236496, -949202525, -778901479, -694614492, -200395387, 275423344,
  273. 430227734, 506948616, 659060556, 883997877, 958139571, 1322822218,
  274. 1537002063, 1747873779, 1955562222, 2024104815, -2067236844, -1933114872,
  275. -1866530822, -1538233109, -1090935817, -965641998
  276. );
  277.  
  278. function binb_sha256(m, l)
  279. {
  280. var HASH = new Array(1779033703, -1150833019, 1013904242, -1521486534,
  281. 1359893119, -1694144372, 528734635, 1541459225);
  282. var W = new Array(64);
  283. var a, b, c, d, e, f, g, h;
  284. var i, j, T1, T2;
  285.  
  286. /* append padding */
  287. m[l >> 5] |= 0x80 << (24 - l % 32);
  288. m[((l + 64 >> 9) << 4) + 15] = l;
  289.  
  290. for(i = 0; i < m.length; i += 16)
  291. {
  292. a = HASH[0];
  293. b = HASH[1];
  294. c = HASH[2];
  295. d = HASH[3];
  296. e = HASH[4];
  297. f = HASH[5];
  298. g = HASH[6];
  299. h = HASH[7];
  300.  
  301. for(j = 0; j < 64; j++)
  302. {
  303. if (j < 16) W[j] = m[j + i];
  304. else W[j] = safe_add(safe_add(safe_add(sha256_Gamma1256(W[j - 2]), W[j - 7]),
  305. sha256_Gamma0256(W[j - 15])), W[j - 16]);
  306.  
  307. T1 = safe_add(safe_add(safe_add(safe_add(h, sha256_Sigma1256(e)), sha256_Ch(e, f, g)),
  308. sha256_K[j]), W[j]);
  309. T2 = safe_add(sha256_Sigma0256(a), sha256_Maj(a, b, c));
  310. h = g;
  311. g = f;
  312. f = e;
  313. e = safe_add(d, T1);
  314. d = c;
  315. c = b;
  316. b = a;
  317. a = safe_add(T1, T2);
  318. }
  319.  
  320. HASH[0] = safe_add(a, HASH[0]);
  321. HASH[1] = safe_add(b, HASH[1]);
  322. HASH[2] = safe_add(c, HASH[2]);
  323. HASH[3] = safe_add(d, HASH[3]);
  324. HASH[4] = safe_add(e, HASH[4]);
  325. HASH[5] = safe_add(f, HASH[5]);
  326. HASH[6] = safe_add(g, HASH[6]);
  327. HASH[7] = safe_add(h, HASH[7]);
  328. }
  329. return HASH;
  330. }
  331.  
  332. function safe_add (x, y)
  333. {
  334. var lsw = (x & 0xFFFF) + (y & 0xFFFF);
  335. var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
  336. return (msw << 16) | (lsw & 0xFFFF);
  337. }
Success #stdin #stdout 0.02s 25796KB
stdin
Standard input is empty
stdout
/*
 * A JavaScript implementation of the Secure Hash Algorithm, SHA-256, as defined
 * in FIPS 180-2
 * Version 2.2 Copyright Angel Marin, Paul Johnston 2000 - 2009.
 * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet
 * Distributed under the BSD License
 * See http://p...content-available-to-author-only...g.uk/crypt/md5 for details.
 * Also http://a...content-available-to-author-only...u.org/projects/jssha2/
 */

/*
 * Configurable variables. You may need to tweak these to be compatible with
 * the server-side, but the defaults work in most cases.
 */
var hexcase = 0;  /* hex output format. 0 - lowercase; 1 - uppercase        */
var b64pad  = ""; /* base-64 pad character. "=" for strict RFC compliance   */

/*
 * These are the functions you'll usually want to call
 * They take string arguments and return either hex or base-64 encoded strings
 */
function hex_sha256(s)    { return rstr2hex(rstr_sha256(str2rstr_utf8(s))); }
function b64_sha256(s)    { return rstr2b64(rstr_sha256(str2rstr_utf8(s))); }
function any_sha256(s, e) { return rstr2any(rstr_sha256(str2rstr_utf8(s)), e); }
function hex_hmac_sha256(k, d)
  { return rstr2hex(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); }
function b64_hmac_sha256(k, d)
  { return rstr2b64(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d))); }
function any_hmac_sha256(k, d, e)
  { return rstr2any(rstr_hmac_sha256(str2rstr_utf8(k), str2rstr_utf8(d)), e); }

/*
 * Perform a simple self-test to see if the VM is working
 */
function sha256_vm_test()
{
  return hex_sha256("abc").toLowerCase() ==
            "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad";
}

/*
 * Calculate the sha256 of a raw string
 */
function rstr_sha256(s)
{
  return binb2rstr(binb_sha256(rstr2binb(s), s.length * 8));
}

/*
 * Calculate the HMAC-sha256 of a key and some data (raw strings)
 */
function rstr_hmac_sha256(key, data)
{
  var bkey = rstr2binb(key);
  if(bkey.length > 16) bkey = binb_sha256(bkey, key.length * 8);

  var ipad = Array(16), opad = Array(16);
  for(var i = 0; i < 16; i++)
  {
    ipad[i] = bkey[i] ^ 0x36363636;
    opad[i] = bkey[i] ^ 0x5C5C5C5C;
  }

  var hash = binb_sha256(ipad.concat(rstr2binb(data)), 512 + data.length * 8);
  return binb2rstr(binb_sha256(opad.concat(hash), 512 + 256));
}

/*
 * Convert a raw string to a hex string
 */
function rstr2hex(input)
{
  try { hexcase } catch(e) { hexcase=0; }
  var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef";
  var output = "";
  var x;
  for(var i = 0; i < input.length; i++)
  {
    x = input.charCodeAt(i);
    output += hex_tab.charAt((x >>> 4) & 0x0F)
           +  hex_tab.charAt( x        & 0x0F);
  }
  return output;
}

/*
 * Convert a raw string to a base-64 string
 */
function rstr2b64(input)
{
  try { b64pad } catch(e) { b64pad=''; }
  var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
  var output = "";
  var len = input.length;
  for(var i = 0; i < len; i += 3)
  {
    var triplet = (input.charCodeAt(i) << 16)
                | (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0)
                | (i + 2 < len ? input.charCodeAt(i+2)      : 0);
    for(var j = 0; j < 4; j++)
    {
      if(i * 8 + j * 6 > input.length * 8) output += b64pad;
      else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F);
    }
  }
  return output;
}

/*
 * Convert a raw string to an arbitrary string encoding
 */
function rstr2any(input, encoding)
{
  var divisor = encoding.length;
  var remainders = Array();
  var i, q, x, quotient;

  /* Convert to an array of 16-bit big-endian values, forming the dividend */
  var dividend = Array(Math.ceil(input.length / 2));
  for(i = 0; i < dividend.length; i++)
  {
    dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1);
  }

  /*
   * Repeatedly perform a long division. The binary array forms the dividend,
   * the length of the encoding is the divisor. Once computed, the quotient
   * forms the dividend for the next step. We stop when the dividend is zero.
   * All remainders are stored for later use.
   */
  while(dividend.length > 0)
  {
    quotient = Array();
    x = 0;
    for(i = 0; i < dividend.length; i++)
    {
      x = (x << 16) + dividend[i];
      q = Math.floor(x / divisor);
      x -= q * divisor;
      if(quotient.length > 0 || q > 0)
        quotient[quotient.length] = q;
    }
    remainders[remainders.length] = x;
    dividend = quotient;
  }

  /* Convert the remainders to the output string */
  var output = "";
  for(i = remainders.length - 1; i >= 0; i--)
    output += encoding.charAt(remainders[i]);

  /* Append leading zero equivalents */
  var full_length = Math.ceil(input.length * 8 /
                                    (Math.log(encoding.length) / Math.log(2)))
  for(i = output.length; i < full_length; i++)
    output = encoding[0] + output;

  return output;
}

/*
 * Encode a string as utf-8.
 * For efficiency, this assumes the input is valid utf-16.
 */
function str2rstr_utf8(input)
{
  var output = "";
  var i = -1;
  var x, y;

  while(++i < input.length)
  {
    /* Decode utf-16 surrogate pairs */
    x = input.charCodeAt(i);
    y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0;
    if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF)
    {
      x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF);
      i++;
    }

    /* Encode output as utf-8 */
    if(x <= 0x7F)
      output += String.fromCharCode(x);
    else if(x <= 0x7FF)
      output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F),
                                    0x80 | ( x         & 0x3F));
    else if(x <= 0xFFFF)
      output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F),
                                    0x80 | ((x >>> 6 ) & 0x3F),
                                    0x80 | ( x         & 0x3F));
    else if(x <= 0x1FFFFF)
      output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07),
                                    0x80 | ((x >>> 12) & 0x3F),
                                    0x80 | ((x >>> 6 ) & 0x3F),
                                    0x80 | ( x         & 0x3F));
  }
  return output;
}

/*
 * Encode a string as utf-16
 */
function str2rstr_utf16le(input)
{
  var output = "";
  for(var i = 0; i < input.length; i++)
    output += String.fromCharCode( input.charCodeAt(i)        & 0xFF,
                                  (input.charCodeAt(i) >>> 8) & 0xFF);
  return output;
}

function str2rstr_utf16be(input)
{
  var output = "";
  for(var i = 0; i < input.length; i++)
    output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF,
                                   input.charCodeAt(i)        & 0xFF);
  return output;
}

/*
 * Convert a raw string to an array of big-endian words
 * Characters >255 have their high-byte silently ignored.
 */
function rstr2binb(input)
{
  var output = Array(input.length >> 2);
  for(var i = 0; i < output.length; i++)
    output[i] = 0;
  for(var i = 0; i < input.length * 8; i += 8)
    output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32);
  return output;
}

/*
 * Convert an array of big-endian words to a string
 */
function binb2rstr(input)
{
  var output = "";
  for(var i = 0; i < input.length * 32; i += 8)
    output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF);
  return output;
}

/*
 * Main sha256 function, with its support functions
 */
function sha256_S (X, n) {return ( X >>> n ) | (X << (32 - n));}
function sha256_R (X, n) {return ( X >>> n );}
function sha256_Ch(x, y, z) {return ((x & y) ^ ((~x) & z));}
function sha256_Maj(x, y, z) {return ((x & y) ^ (x & z) ^ (y & z));}
function sha256_Sigma0256(x) {return (sha256_S(x, 2) ^ sha256_S(x, 13) ^ sha256_S(x, 22));}
function sha256_Sigma1256(x) {return (sha256_S(x, 6) ^ sha256_S(x, 11) ^ sha256_S(x, 25));}
function sha256_Gamma0256(x) {return (sha256_S(x, 7) ^ sha256_S(x, 18) ^ sha256_R(x, 3));}
function sha256_Gamma1256(x) {return (sha256_S(x, 17) ^ sha256_S(x, 19) ^ sha256_R(x, 10));}
function sha256_Sigma0512(x) {return (sha256_S(x, 28) ^ sha256_S(x, 34) ^ sha256_S(x, 39));}
function sha256_Sigma1512(x) {return (sha256_S(x, 14) ^ sha256_S(x, 18) ^ sha256_S(x, 41));}
function sha256_Gamma0512(x) {return (sha256_S(x, 1)  ^ sha256_S(x, 8) ^ sha256_R(x, 7));}
function sha256_Gamma1512(x) {return (sha256_S(x, 19) ^ sha256_S(x, 61) ^ sha256_R(x, 6));}

var sha256_K = new Array
(
  1116352408, 1899447441, -1245643825, -373957723, 961987163, 1508970993,
  -1841331548, -1424204075, -670586216, 310598401, 607225278, 1426881987,
  1925078388, -2132889090, -1680079193, -1046744716, -459576895, -272742522,
  264347078, 604807628, 770255983, 1249150122, 1555081692, 1996064986,
  -1740746414, -1473132947, -1341970488, -1084653625, -958395405, -710438585,
  113926993, 338241895, 666307205, 773529912, 1294757372, 1396182291,
  1695183700, 1986661051, -2117940946, -1838011259, -1564481375, -1474664885,
  -1035236496, -949202525, -778901479, -694614492, -200395387, 275423344,
  430227734, 506948616, 659060556, 883997877, 958139571, 1322822218,
  1537002063, 1747873779, 1955562222, 2024104815, -2067236844, -1933114872,
  -1866530822, -1538233109, -1090935817, -965641998
);

function binb_sha256(m, l)
{
  var HASH = new Array(1779033703, -1150833019, 1013904242, -1521486534,
                       1359893119, -1694144372, 528734635, 1541459225);
  var W = new Array(64);
  var a, b, c, d, e, f, g, h;
  var i, j, T1, T2;

  /* append padding */
  m[l >> 5] |= 0x80 << (24 - l % 32);
  m[((l + 64 >> 9) << 4) + 15] = l;

  for(i = 0; i < m.length; i += 16)
  {
    a = HASH[0];
    b = HASH[1];
    c = HASH[2];
    d = HASH[3];
    e = HASH[4];
    f = HASH[5];
    g = HASH[6];
    h = HASH[7];

    for(j = 0; j < 64; j++)
    {
      if (j < 16) W[j] = m[j + i];
      else W[j] = safe_add(safe_add(safe_add(sha256_Gamma1256(W[j - 2]), W[j - 7]),
                                            sha256_Gamma0256(W[j - 15])), W[j - 16]);

      T1 = safe_add(safe_add(safe_add(safe_add(h, sha256_Sigma1256(e)), sha256_Ch(e, f, g)),
                                                          sha256_K[j]), W[j]);
      T2 = safe_add(sha256_Sigma0256(a), sha256_Maj(a, b, c));
      h = g;
      g = f;
      f = e;
      e = safe_add(d, T1);
      d = c;
      c = b;
      b = a;
      a = safe_add(T1, T2);
    }

    HASH[0] = safe_add(a, HASH[0]);
    HASH[1] = safe_add(b, HASH[1]);
    HASH[2] = safe_add(c, HASH[2]);
    HASH[3] = safe_add(d, HASH[3]);
    HASH[4] = safe_add(e, HASH[4]);
    HASH[5] = safe_add(f, HASH[5]);
    HASH[6] = safe_add(g, HASH[6]);
    HASH[7] = safe_add(h, HASH[7]);
  }
  return HASH;
}

function safe_add (x, y)
{
  var lsw = (x & 0xFFFF) + (y & 0xFFFF);
  var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
  return (msw << 16) | (lsw & 0xFFFF);
}