fork download
  1. PROGRAM cluster
  2. !--------------------------------------------------------!
  3. ! Example Molecular Dynamics Program ver.2.2 !
  4. ! !
  5. ! [プログラム概要] !
  6. ! ・ヴェルレ法による時間発展(数値積分) !
  7. ! ・N粒子孤立系に対するNVEアンサンブル !
  8. ! ・Lennard-Jones (12-6) ポテンシャル !
  9. ! !
  10. ! [改訂履歴] !
  11. ! 2002.10.05 ver 1.0 岡田 勇 !
  12. ! 2011.06.08 ver 2.0 北 幸海 (Fortran 90化) !
  13. ! 2020.12.14 ver 2.1 北 幸海 (単純化) !
  14. ! 2020.12.15 ver 2.2 北 幸海 (ウェブ実習用に標準出力化) !
  15. !--------------------------------------------------------!
  16. IMPLICIT NONE
  17.  
  18. !----- 固定変数 (変更しないこと) -----
  19. INTEGER, PARAMETER :: &
  20. NpTot = 2 ! 粒子数
  21. REAL(8), PARAMETER :: &
  22. Eps = 1.d0, & ! L-Jポテンシャルのパラメータ1
  23. Sigma = 1.d0, & ! L-Jポテンシャルのパラメータ2
  24. Mass = 1.d0 ! 粒子の質量
  25.  
  26.  
  27. !----- ユーザー変数 (課題に応じて変更する変数) -----
  28. ! Dt: 時間ステップ
  29. ! MDStep: ステップ数(繰り返しの回数)
  30. ! --> Dt = 1.d-2〜1.d-3が適当. Dt*MDStep= 1〜3 とする.
  31. ! --> サーバーに負荷をかけないよう Dt ≧ 1.d-5 とする
  32. INTEGER, PARAMETER :: MDStep = 10000 ! 総ステップ数
  33. REAL(8), PARAMETER :: Dt = 1.d-5 ! 時間ステップ
  34. REAL(8), PARAMETER :: R2_ini = 1.0d0 ! 粒子2の初期位置
  35. REAL(8), PARAMETER :: V2_ini = -1.0d0 ! 粒子2の初速
  36. INTEGER, PARAMETER :: NOut = 100 ! 出力データ数(MDStep以下で100を超えない整数)
  37.  
  38.  
  39. !----- 以下の変数・配列はプログラム内で自動更新 -----
  40. INTEGER i
  41. INTEGER :: NSum = 0, & ! 蓄積の回数
  42. n = 0, & ! 現在のステップ数
  43. PrintInt = 1 ! 出力間隔
  44. REAL(8) :: &
  45. R0(3, NpTot) = 0.d0, & ! 初期位置
  46. V(3, NpTot) = 0.d0, & ! 速度
  47. R(3, NpTot) = 0.d0, & ! 位置
  48. dR(3, NpTot) = 0.d0, & ! 初期位置からの変位
  49. dR_prev(3, NpTot) = 0.d0, & ! 時刻t(n-1)とt(n)間の変位
  50. dR_next(3, NpTot) = 0.d0, & ! 時刻t(n)とt(n+1)間の変位
  51. F(3, NpTot) = 0.d0, & ! 力
  52. T = 0.d0, & ! 運動エネルギー
  53. P = 0.d0, & ! ポテンシャルエネルギー
  54. H = 0.d0, & ! 全エネルギー(ハミルトニアン)
  55. H0 = 0.d0, & ! 計算開始時の全エネルギー
  56. V0 = 0.d0, & ! 計算開始時の平均速度
  57. MaxErrH = 0.d0, & ! ハミルトニアンの最大誤差
  58. SumH = 0.d0, & ! 蓄積されたハミルトニアン
  59. SumH2 = 0.d0, & ! 蓄積されたハミルトニアンの二乗
  60. SumT = 0.d0, & ! 蓄積された運動エネルギー
  61. SumT2 = 0.d0 ! 蓄積された運動エネルギーの二乗
  62.  
  63.  
  64. !----- Safety net -----
  65. if (Dt*MDStep > 3.d0) then
  66. write(6,*) 'Too long simulation time !!'
  67. stop
  68. endif
  69.  
  70.  
  71. !----- 各種設定値の出力 -----
  72. PrintInt = MDStep/NOut
  73. write(6,*) '=============================='
  74. write(6,*) 'MD simulation by Verlet method'
  75. write(6,*) '=============================='
  76. write(6,*) ' # of particles = ', NpTot
  77. write(6,*) ' L-J parameters:'
  78. write(6,*) ' --> Epsilon = ', Eps
  79. write(6,*) ' --> Sigma = ', Sigma
  80. write(6,*) ' Mass of particle = ', Mass
  81. write(6,*) ' Time step = ', Dt
  82. write(6,*) ' # of MD steps = ', MDStep
  83. write(6,*) ' Simulation time = ', Dt*real(MDStep,8)
  84. write(6,*) ' Print interval = ', Dt*real(PrintInt,8)
  85. write(6,*)
  86.  
  87.  
  88. !----- 粒子の初期情報の設定 -----
  89. ! 初期位置
  90. R0(1,2) = R2_ini ! 粒子1
  91. R0(1,1) = -R0(1,2) ! 粒子2
  92.  
  93. ! 初速
  94. V(1,2) = V2_ini ! 粒子1
  95. V(1,1) = -V(1,2) ! 粒子2
  96.  
  97. ! 初速度の大きさの平均値
  98. V0= 0.d0
  99. do i=1, NpTot
  100. V0= V0 + V(1,i)**2 + V(2,i)**2 + V(3,i)**2
  101. enddo ! i
  102. V0= sqrt(V0/real(NpTot,8))
  103.  
  104.  
  105. !----- 0ステップ目での力の計算 -----
  106. call ForcePotential (NpTot, n, MDStep, R0, dR, Eps, Sigma, P, F)
  107.  
  108.  
  109. !----- 1ステップ目の座標を計算 -----
  110. call Verlet (NpTot, n, MDStep, NSum, Dt, Mass, R0, P, R, F, V, &
  111. dR, dR_prev, dR_next, H, T, SumH, SumH2, SumT, SumT2)
  112.  
  113.  
  114. !----- ハミルトニアンの初期値を保存 -----
  115. H0 = H
  116.  
  117.  
  118. !----- 出力 -----
  119. ! ヘッダー情報の出力
  120. write(6,'(a)') '#time, position, velocity, kinetic, potential, hamiltonian'
  121.  
  122. ! 位置、速度などの出力.
  123. call Output (0, PrintInt, NpTot, n, MDStep, NSum, Dt, R, H, T, P, V, &
  124. H0, V0, SumH, SumH2, SumT, SumT2, MaxErrH)
  125.  
  126.  
  127. !----- 2ステップ目以降の時間発展 -----
  128. do n= 1, MDStep
  129.  
  130. ! nステップ目での力の計算
  131. call ForcePotential (NpTot, n, MDStep, R0, dR, Eps, Sigma, P, F)
  132.  
  133. ! (n+1)ステップ目の座標を計算
  134. call Verlet (NpTot, n, MDStep, NSum, Dt, Mass, R0, P, R, F, V, &
  135. dR, dR_prev, dR_next, H, T, SumH, SumH2, SumT, SumT2)
  136.  
  137. ! 出力
  138. call Output (0, PrintInt, NpTot, n, MDStep, NSum, Dt, R, H, T, P, V, &
  139. H0, V0, SumH, SumH2, SumT, SumT2, MaxErrH)
  140.  
  141. enddo ! n
  142.  
  143.  
  144. !----- 各種平均値を出力 -----
  145. call Output (1, PrintInt, NpTot, n, MDStep, NSum, Dt, R, H, T, P, V, &
  146. H0, V0, SumH, SumH2, SumT, SumT2, MaxErrH)
  147.  
  148. write(6,*) ' Done.'
  149. write(6,*)
  150.  
  151. !----- 主プログラムの終了 -----
  152. END PROGRAM cluster
  153.  
  154.  
  155.  
  156. SUBROUTINE ForcePotential(NpTot, n, MDStep, R0, dR, Eps, Sigma, P, F)
  157. !----------------------------------!
  158. ! ポテンシャルエネルギーと力の計算 !
  159. !----------------------------------!
  160. IMPLICIT NONE
  161. INTEGER, INTENT(in) :: NpTot, n, MDStep
  162. REAL(8), INTENT(in) :: R0(3,NpTot), dR(3,NpTot), Eps, Sigma
  163. REAL(8), INTENT(inout) :: P, F(3,NpTot)
  164. ! Local stuff
  165. INTEGER i, j
  166. REAL(8) R1, R2, Rij(3), dpdr, drdv(3)
  167.  
  168. F(:,:)=0.d0 ; P=0.d0
  169.  
  170. do i= 1, NpTot
  171. do j= 1, NpTot
  172.  
  173. if (i /= j) then
  174.  
  175. ! dR: displacement from time 0 to time n
  176. Rij(:) = (dR(:,j) - dR(:,i)) + (R0(:,j) - R0(:,i))
  177. R2 = Rij(1)**2 + Rij(2)**2 + Rij(3)**2
  178. R1 = sqrt(R2)
  179.  
  180. ! potential energy
  181. P = P + 4.d0 * Eps * ((Sigma**2/R2)**6 - (Sigma**2/R2)**3)
  182.  
  183. ! force
  184. dpdr = 4.d0 * Eps * (-12.d0*(Sigma**2/R2)**6 + 6.d0*(Sigma**2/R2)**3) / R1
  185. drdv(:) = -Rij(:) / R1
  186. F(:,i) = F(:,i) - dpdr*drdv(:)
  187.  
  188. endif ! i /= j
  189.  
  190. enddo ! j
  191. enddo ! i
  192.  
  193. P = 0.5d0*P
  194.  
  195. return
  196. END SUBROUTINE ForcePotential
  197.  
  198.  
  199.  
  200. SUBROUTINE Verlet(NpTot, n, MDStep, NSum, Dt, Mass, R0, P, R, F, V, &
  201. dR, dR_prev, dR_next, H, T, SumH, SumH2, SumT, SumT2)
  202. !--------------------------!
  203. ! Verlet法による座標の更新 !
  204. !--------------------------!
  205. IMPLICIT NONE
  206. INTEGER, INTENT(in) :: NpTot, n, MDStep
  207. INTEGER, INTENT(inout) :: NSum
  208. REAL(8), INTENT(in) :: R0(3,NpTot), P, Dt, Mass
  209. REAL(8), INTENT(inout) :: R(3,NpTot), F(3,NpTot), V(3,NpTot), dR(3,NpTot), &
  210. dR_prev(3,NpTot), dR_next(3,NpTot), H, T, SumH, &
  211. SumH2, SumT, SumT2
  212. ! Local stuff
  213. INTEGER i
  214.  
  215. !----- 0-th step -----
  216. if (n == 0) then
  217. ! current position
  218. R(:,:) = R0(:,:)
  219.  
  220. ! dR = dR_next = R(Δt) - R(0) = V(0)Δt + a(0)*(Δt)^2/2
  221. do i= 1, NpTot
  222. dR_next(:,i) = V(:,i)*Dt + 0.5d0*F(:,i)*Dt**2/Mass
  223. dR(:,i) = dR_next(:,i)
  224. enddo ! i
  225.  
  226.  
  227. !----- later steps -----
  228. elseif (n >= 1) then
  229. ! current position
  230. R(:,:) = R0(:,:) + dR(:,:)
  231.  
  232. ! dR_next = R(t+Δt) - R(t) = R(t) - R(t-Δt) + a(t)*(Δt)^2
  233. ! dR_prev = R(t) - R(t-Δt)
  234. ! dR = R(t+Δt) - R(0)
  235. do i= 1, NpTot
  236. dR_next(:,i) = dR_prev(:,i) + F(:,i)*Dt**2/Mass
  237. dR(:,i) = dR(:,i) + dR_next(:,i)
  238. V(:,i) = 0.5d0 * (dR_next(:,i) + dR_prev(:,i)) / Dt
  239. enddo
  240.  
  241. endif
  242.  
  243.  
  244. !----- Renaming for use at the next step -----
  245. dR_prev(:,:)= dR_next(:,:)
  246.  
  247.  
  248. !----- 運動エネルギーの計算 -----
  249. T = 0.d0
  250. do i= 1, NpTot
  251. T = T + 0.5d0 * Mass * (V(1,i)**2 + V(2,i)**2 + V(3,i)**2)
  252. enddo
  253.  
  254.  
  255. !----- ハミルトニアンの計算 -----
  256. H = T + P
  257.  
  258.  
  259. !----- 蓄積 -----
  260. NSum = NSum + 1 ! 蓄積の回数
  261. SumH = SumH + H ! ハミルトニアン
  262. SumH2 = SumH2 + H**2 ! ハミルトニアンの2乗
  263. SumT = SumT + T ! 運動エネルギー
  264. SumT2 = SumT2 + T**2 ! 運動エネルギーの2乗
  265.  
  266. return
  267. END SUBROUTINE Verlet
  268.  
  269.  
  270.  
  271. SUBROUTINE Output(mode, PrintInt, NpTot, n, MDStep, NSum, Dt, R, H, T, P, V, H0, V0, &
  272. SumH, SumH2, SumT, SumT2, MaxErrH)
  273. !------------!
  274. ! 結果の出力 !
  275. !------------!
  276. IMPLICIT NONE
  277. INTEGER, INTENT(in) :: mode, PrintInt, NpTot, n, MDStep, NSum
  278. REAL(8), INTENT(in) :: Dt, R(3,NpTot), H, T, P, V(3,NpTot), H0, V0, SumH, SumH2, SumT, SumT2
  279. REAL(8), INTENT(inout) :: MaxErrH
  280. ! Local stuff
  281. REAL(8) time, AveH, AveH2, AveT, AveT2, RMSD_H, RMSD_T
  282.  
  283. if (mode == 0) then
  284. !----- Output data at the current time -----
  285. time = Dt*real(n,8)
  286.  
  287. if ( (n==MDStep) .or. (mod(n,PrintInt)==0) ) &
  288. write(6, '( e12.6, 4(e14.6), e23.15 )') time, R(1,2), V(1,2), T, P, H
  289.  
  290. MaxErrH= max(MaxErrH, abs(H-H0)) ! Maximum error in Hamiltonian
  291.  
  292.  
  293. elseif (mode == 1) then
  294. !----- Compute root mean square deviation (RMSD) -----
  295. ! compute averages
  296. AveH = SumH /real(NSum,8) ! ハミルトニアン
  297. AveH2 = SumH2/real(NSum,8) ! ハミルトニアンの2乗
  298. AveT = SumT /real(NSum,8) ! 運動エネルギー
  299. AveT2 = SumT2/real(NSum,8) ! 運動エネルギーの2乗
  300.  
  301. ! compute RMSD
  302. RMSD_H = sqrt(abs(AveH2-AveH**2))
  303. RMSD_T = sqrt(abs(AveT2-AveT**2))
  304.  
  305. ! print
  306. write(6, *)
  307. write(6, *) '---------'
  308. write(6, *) ' Summary '
  309. write(6, *) '---------'
  310. write(6, '( a, e23.15 )') 'Dt =', Dt
  311. write(6, '( a, e23.15 )') 'V0 =', V0
  312. write(6, '( a, e23.15 )') 'RMSD(H) =', RMSD_H
  313. write(6, '( a, e23.15 )') 'Max. err.(H) =', MaxErrH
  314. write(6, '( a, e23.15 )') 'Final pos. =', R(1,2)
  315. write(6, '( 2(a, e23.15) )') '<H>=', AveH, ' +- ', RMSD_H
  316. write(6, '( 2(a, e23.15) )') '<T>=', AveT, ' +- ', RMSD_T
  317. write(6, '( a, i10 )') 'Norm. const.(NSum)= ', NSum
  318.  
  319. endif
  320.  
  321. return
  322. END SUBROUTINE Output
Success #stdin #stdout 0.01s 5280KB
stdin
Standard input is empty
stdout
 ==============================
 MD simulation by Verlet method
 ==============================
  # of particles    =            2
  L-J parameters:
    --> Epsilon     =    1.0000000000000000     
    --> Sigma       =    1.0000000000000000     
  Mass of particle  =    1.0000000000000000     
  Time step         =    1.0000000000000001E-005
  # of MD steps     =        10000
  Simulation time   =   0.10000000000000001     
  Print interval    =    1.0000000000000000E-003

#time,  position,  velocity,  kinetic,  potential,  hamiltonian
0.000000E+00  0.100000E+01 -0.100000E+01  0.100000E+01 -0.615234E-01  0.938476562500000E+00
0.100000E-02  0.999000E+00 -0.100018E+01  0.100036E+01 -0.618880E-01  0.938476562500168E+00
0.200000E-02  0.998000E+00 -0.100037E+01  0.100073E+01 -0.622551E-01  0.938476562500339E+00
0.300000E-02  0.996999E+00 -0.100055E+01  0.100110E+01 -0.626248E-01  0.938476562500510E+00
0.400000E-02  0.995999E+00 -0.100074E+01  0.100147E+01 -0.629971E-01  0.938476562500685E+00
0.500000E-02  0.994998E+00 -0.100092E+01  0.100185E+01 -0.633720E-01  0.938476562500860E+00
0.600000E-02  0.993997E+00 -0.100111E+01  0.100223E+01 -0.637496E-01  0.938476562501038E+00
0.700000E-02  0.992995E+00 -0.100130E+01  0.100261E+01 -0.641298E-01  0.938476562501218E+00
0.800000E-02  0.991994E+00 -0.100149E+01  0.100299E+01 -0.645127E-01  0.938476562501399E+00
0.900000E-02  0.990992E+00 -0.100169E+01  0.100337E+01 -0.648983E-01  0.938476562501582E+00
0.100000E-01  0.989991E+00 -0.100188E+01  0.100376E+01 -0.652867E-01  0.938476562501765E+00
0.110000E-01  0.988989E+00 -0.100208E+01  0.100415E+01 -0.656778E-01  0.938476562501950E+00
0.120000E-01  0.987987E+00 -0.100227E+01  0.100455E+01 -0.660717E-01  0.938476562502137E+00
0.130000E-01  0.986984E+00 -0.100247E+01  0.100494E+01 -0.664684E-01  0.938476562502326E+00
0.140000E-01  0.985982E+00 -0.100267E+01  0.100534E+01 -0.668679E-01  0.938476562502516E+00
0.150000E-01  0.984979E+00 -0.100287E+01  0.100575E+01 -0.672703E-01  0.938476562502710E+00
0.160000E-01  0.983976E+00 -0.100307E+01  0.100615E+01 -0.676755E-01  0.938476562502906E+00
0.170000E-01  0.982973E+00 -0.100327E+01  0.100656E+01 -0.680837E-01  0.938476562503103E+00
0.180000E-01  0.981969E+00 -0.100348E+01  0.100697E+01 -0.684947E-01  0.938476562503301E+00
0.190000E-01  0.980966E+00 -0.100369E+01  0.100739E+01 -0.689087E-01  0.938476562503502E+00
0.200000E-01  0.979962E+00 -0.100389E+01  0.100780E+01 -0.693257E-01  0.938476562503705E+00
0.210000E-01  0.978958E+00 -0.100410E+01  0.100822E+01 -0.697457E-01  0.938476562503910E+00
0.220000E-01  0.977954E+00 -0.100431E+01  0.100865E+01 -0.701686E-01  0.938476562504116E+00
0.230000E-01  0.976949E+00 -0.100453E+01  0.100907E+01 -0.705947E-01  0.938476562504323E+00
0.240000E-01  0.975945E+00 -0.100474E+01  0.100950E+01 -0.710237E-01  0.938476562504532E+00
0.250000E-01  0.974940E+00 -0.100495E+01  0.100993E+01 -0.714559E-01  0.938476562504743E+00
0.260000E-01  0.973935E+00 -0.100517E+01  0.101037E+01 -0.718912E-01  0.938476562504958E+00
0.270000E-01  0.972930E+00 -0.100539E+01  0.101081E+01 -0.723297E-01  0.938476562505175E+00
0.280000E-01  0.971924E+00 -0.100561E+01  0.101125E+01 -0.727713E-01  0.938476562505395E+00
0.290000E-01  0.970918E+00 -0.100583E+01  0.101169E+01 -0.732162E-01  0.938476562505615E+00
0.300000E-01  0.969912E+00 -0.100605E+01  0.101214E+01 -0.736642E-01  0.938476562505837E+00
0.310000E-01  0.968906E+00 -0.100628E+01  0.101259E+01 -0.741155E-01  0.938476562506062E+00
0.320000E-01  0.967900E+00 -0.100650E+01  0.101305E+01 -0.745701E-01  0.938476562506288E+00
0.330000E-01  0.966893E+00 -0.100673E+01  0.101350E+01 -0.750281E-01  0.938476562506517E+00
0.340000E-01  0.965886E+00 -0.100696E+01  0.101397E+01 -0.754893E-01  0.938476562506749E+00
0.350000E-01  0.964879E+00 -0.100719E+01  0.101443E+01 -0.759539E-01  0.938476562506983E+00
0.360000E-01  0.963872E+00 -0.100742E+01  0.101490E+01 -0.764219E-01  0.938476562507219E+00
0.370000E-01  0.962864E+00 -0.100766E+01  0.101537E+01 -0.768934E-01  0.938476562507457E+00
0.380000E-01  0.961857E+00 -0.100789E+01  0.101584E+01 -0.773683E-01  0.938476562507696E+00
0.390000E-01  0.960849E+00 -0.100813E+01  0.101632E+01 -0.778467E-01  0.938476562507938E+00
0.400000E-01  0.959840E+00 -0.100837E+01  0.101681E+01 -0.783286E-01  0.938476562508183E+00
0.410000E-01  0.958832E+00 -0.100861E+01  0.101729E+01 -0.788140E-01  0.938476562508430E+00
0.420000E-01  0.957823E+00 -0.100885E+01  0.101778E+01 -0.793030E-01  0.938476562508681E+00
0.430000E-01  0.956814E+00 -0.100909E+01  0.101827E+01 -0.797957E-01  0.938476562508933E+00
0.440000E-01  0.955805E+00 -0.100934E+01  0.101877E+01 -0.802919E-01  0.938476562509187E+00
0.450000E-01  0.954796E+00 -0.100959E+01  0.101927E+01 -0.807919E-01  0.938476562509444E+00
0.460000E-01  0.953786E+00 -0.100984E+01  0.101977E+01 -0.812955E-01  0.938476562509704E+00
0.470000E-01  0.952776E+00 -0.101009E+01  0.102028E+01 -0.818028E-01  0.938476562509966E+00
0.480000E-01  0.951766E+00 -0.101034E+01  0.102079E+01 -0.823140E-01  0.938476562510230E+00
0.490000E-01  0.950755E+00 -0.101060E+01  0.102131E+01 -0.828289E-01  0.938476562510499E+00
0.500000E-01  0.949744E+00 -0.101085E+01  0.102182E+01 -0.833477E-01  0.938476562510771E+00
0.510000E-01  0.948733E+00 -0.101111E+01  0.102235E+01 -0.838703E-01  0.938476562511043E+00
0.520000E-01  0.947722E+00 -0.101137E+01  0.102287E+01 -0.843968E-01  0.938476562511318E+00
0.530000E-01  0.946711E+00 -0.101163E+01  0.102340E+01 -0.849273E-01  0.938476562511596E+00
0.540000E-01  0.945699E+00 -0.101190E+01  0.102394E+01 -0.854617E-01  0.938476562511877E+00
0.550000E-01  0.944687E+00 -0.101216E+01  0.102448E+01 -0.860001E-01  0.938476562512161E+00
0.560000E-01  0.943675E+00 -0.101243E+01  0.102502E+01 -0.865425E-01  0.938476562512447E+00
0.570000E-01  0.942662E+00 -0.101270E+01  0.102557E+01 -0.870891E-01  0.938476562512735E+00
0.580000E-01  0.941649E+00 -0.101297E+01  0.102612E+01 -0.876397E-01  0.938476562513028E+00
0.590000E-01  0.940636E+00 -0.101325E+01  0.102667E+01 -0.881945E-01  0.938476562513323E+00
0.600000E-01  0.939623E+00 -0.101352E+01  0.102723E+01 -0.887534E-01  0.938476562513623E+00
0.610000E-01  0.938609E+00 -0.101380E+01  0.102779E+01 -0.893166E-01  0.938476562513924E+00
0.620000E-01  0.937595E+00 -0.101408E+01  0.102836E+01 -0.898840E-01  0.938476562514230E+00
0.630000E-01  0.936581E+00 -0.101436E+01  0.102893E+01 -0.904558E-01  0.938476562514537E+00
0.640000E-01  0.935566E+00 -0.101465E+01  0.102951E+01 -0.910318E-01  0.938476562514846E+00
0.650000E-01  0.934552E+00 -0.101493E+01  0.103009E+01 -0.916122E-01  0.938476562515159E+00
0.660000E-01  0.933537E+00 -0.101522E+01  0.103067E+01 -0.921970E-01  0.938476562515476E+00
0.670000E-01  0.932521E+00 -0.101551E+01  0.103126E+01 -0.927863E-01  0.938476562515796E+00
0.680000E-01  0.931505E+00 -0.101580E+01  0.103186E+01 -0.933801E-01  0.938476562516120E+00
0.690000E-01  0.930490E+00 -0.101610E+01  0.103245E+01 -0.939784E-01  0.938476562516447E+00
0.700000E-01  0.929473E+00 -0.101639E+01  0.103306E+01 -0.945812E-01  0.938476562516775E+00
0.710000E-01  0.928457E+00 -0.101669E+01  0.103367E+01 -0.951887E-01  0.938476562517108E+00
0.720000E-01  0.927440E+00 -0.101699E+01  0.103428E+01 -0.958008E-01  0.938476562517444E+00
0.730000E-01  0.926423E+00 -0.101730E+01  0.103489E+01 -0.964176E-01  0.938476562517785E+00
0.740000E-01  0.925405E+00 -0.101760E+01  0.103552E+01 -0.970391E-01  0.938476562518130E+00
0.750000E-01  0.924388E+00 -0.101791E+01  0.103614E+01 -0.976654E-01  0.938476562518477E+00
0.760000E-01  0.923369E+00 -0.101822E+01  0.103677E+01 -0.982965E-01  0.938476562518828E+00
0.770000E-01  0.922351E+00 -0.101853E+01  0.103741E+01 -0.989325E-01  0.938476562519184E+00
0.780000E-01  0.921332E+00 -0.101885E+01  0.103805E+01 -0.995734E-01  0.938476562519542E+00
0.790000E-01  0.920313E+00 -0.101916E+01  0.103870E+01 -0.100219E+00  0.938476562519905E+00
0.800000E-01  0.919294E+00 -0.101948E+01  0.103935E+01 -0.100870E+00  0.938476562520270E+00
0.810000E-01  0.918274E+00 -0.101981E+01  0.104000E+01 -0.101526E+00  0.938476562520638E+00
0.820000E-01  0.917254E+00 -0.102013E+01  0.104066E+01 -0.102187E+00  0.938476562521012E+00
0.830000E-01  0.916234E+00 -0.102046E+01  0.104133E+01 -0.102853E+00  0.938476562521389E+00
0.840000E-01  0.915214E+00 -0.102078E+01  0.104200E+01 -0.103524E+00  0.938476562521769E+00
0.850000E-01  0.914193E+00 -0.102112E+01  0.104268E+01 -0.104201E+00  0.938476562522153E+00
0.860000E-01  0.913171E+00 -0.102145E+01  0.104336E+01 -0.104882E+00  0.938476562522540E+00
0.870000E-01  0.912150E+00 -0.102179E+01  0.104405E+01 -0.105570E+00  0.938476562522932E+00
0.880000E-01  0.911128E+00 -0.102212E+01  0.104474E+01 -0.106262E+00  0.938476562523327E+00
0.890000E-01  0.910105E+00 -0.102247E+01  0.104544E+01 -0.106960E+00  0.938476562523727E+00
0.900000E-01  0.909083E+00 -0.102281E+01  0.104614E+01 -0.107663E+00  0.938476562524131E+00
0.910000E-01  0.908060E+00 -0.102316E+01  0.104685E+01 -0.108372E+00  0.938476562524539E+00
0.920000E-01  0.907037E+00 -0.102351E+01  0.104756E+01 -0.109087E+00  0.938476562524952E+00
0.930000E-01  0.906013E+00 -0.102386E+01  0.104828E+01 -0.109807E+00  0.938476562525368E+00
0.940000E-01  0.904989E+00 -0.102421E+01  0.104901E+01 -0.110532E+00  0.938476562525790E+00
0.950000E-01  0.903964E+00 -0.102457E+01  0.104974E+01 -0.111264E+00  0.938476562526217E+00
0.960000E-01  0.902940E+00 -0.102493E+01  0.105048E+01 -0.112001E+00  0.938476562526647E+00
0.970000E-01  0.901915E+00 -0.102529E+01  0.105122E+01 -0.112744E+00  0.938476562527079E+00
0.980000E-01  0.900889E+00 -0.102566E+01  0.105197E+01 -0.113493E+00  0.938476562527518E+00
0.990000E-01  0.899863E+00 -0.102602E+01  0.105272E+01 -0.114248E+00  0.938476562527963E+00
0.100000E+00  0.898837E+00 -0.102639E+01  0.105349E+01 -0.115009E+00  0.938476562528410E+00

 ---------
  Summary 
 ---------
Dt           =  0.100000000000000E-04
V0           =  0.100000000000000E+01
RMSD(H)      =  0.567419313331240E-07
Max. err.(H) =  0.284103851555528E-10
Final pos.   =  0.898837039277672E+00
<H>=  0.938476562511900E+00 +-   0.567419313331240E-07
<T>=  0.102345220946073E+01 +-   0.153471410257749E-01
Norm. const.(NSum)=       10001
  Done.