# testing data
# list中每個element都是一個data frame
# 表示不同方案的差異
list(structure(list(n = c(1, 2, 3, 4, 5, 6), count = c(16L, 77L,
159L, 152L, 73L, 23L), avg = c(9.1725, 10.2198051948052, 9.12234800838574,
9.40023026315789, 9.84950684931507, 10.161231884058)), class = c("tbl_df",
"tbl", "data.frame"), row.names = c(NA, -6L), .Names = c("n",
"count", "avg")), structure(list(n = c(1, 2, 3, 4, 5, 6), count = c(16L,
93L, 141L, 160L, 78L, 12L), avg = c(8.848125, 9.06784946236559,
8.89146572104019, 9.39596875, 9.04123076923077, 7.22930555555556
)), class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA,
-6L), .Names = c("n", "count", "avg")), structure(list(n = c(1,
2, 3, 4, 5, 6, 7), count = c(14L, 80L, 165L, 153L, 75L, 12L,
1L), avg = c(9.69142857142857, 10.8685625, 10.800202020202, 11.0716013071895,
10.80032, 10.7166666666667, 11.2257142857143)), class = c("tbl_df",
"tbl", "data.frame"), row.names = c(NA, -7L), .Names = c("n",
"count", "avg")), structure(list(n = c(1, 2, 3, 4, 5, 6, 7),
count = c(12L, 85L, 171L, 136L, 72L, 22L, 2L), avg = c(6.63916666666667,
7.97017647058824, 8.25945419103314, 8.49849264705882, 8.55227777777778,
8.73143939393939, 6.78071428571429)), class = c("tbl_df",
"tbl", "data.frame"), row.names = c(NA, -7L), .Names = c("n",
"count", "avg")), structure(list(n = c(1, 2, 3, 4, 5, 6, 7),
count = c(11L, 75L, 137L, 190L, 75L, 11L, 1L), avg = c(8.84090909090909,
9.1746, 8.65717761557178, 9.96431578947368, 9.80224, 11.0812121212121,
8.44571428571428)), class = c("tbl_df", "tbl", "data.frame"
), row.names = c(NA, -7L), .Names = c("n", "count", "avg")))
CiMgdGVzdGluZyBkYXRhCiMgbGlzdOS4reavj+WAi2VsZW1lbnTpg73mmK/kuIDlgItkYXRhIGZyYW1lCiMg6KGo56S65LiN5ZCM5pa55qGI55qE5beu55WwCgpsaXN0KHN0cnVjdHVyZShsaXN0KG4gPSBjKDEsIDIsIDMsIDQsIDUsIDYpLCBjb3VudCA9IGMoMTZMLCA3N0wsIAoxNTlMLCAxNTJMLCA3M0wsIDIzTCksIGF2ZyA9IGMoOS4xNzI1LCAxMC4yMTk4MDUxOTQ4MDUyLCA5LjEyMjM0ODAwODM4NTc0LCAKOS40MDAyMzAyNjMxNTc4OSwgOS44NDk1MDY4NDkzMTUwNywgMTAuMTYxMjMxODg0MDU4KSksIGNsYXNzID0gYygidGJsX2RmIiwgCiJ0YmwiLCAiZGF0YS5mcmFtZSIpLCByb3cubmFtZXMgPSBjKE5BLCAtNkwpLCAuTmFtZXMgPSBjKCJuIiwgCiJjb3VudCIsICJhdmciKSksIHN0cnVjdHVyZShsaXN0KG4gPSBjKDEsIDIsIDMsIDQsIDUsIDYpLCBjb3VudCA9IGMoMTZMLCAKOTNMLCAxNDFMLCAxNjBMLCA3OEwsIDEyTCksIGF2ZyA9IGMoOC44NDgxMjUsIDkuMDY3ODQ5NDYyMzY1NTksIAo4Ljg5MTQ2NTcyMTA0MDE5LCA5LjM5NTk2ODc1LCA5LjA0MTIzMDc2OTIzMDc3LCA3LjIyOTMwNTU1NTU1NTU2CikpLCBjbGFzcyA9IGMoInRibF9kZiIsICJ0YmwiLCAiZGF0YS5mcmFtZSIpLCByb3cubmFtZXMgPSBjKE5BLCAKLTZMKSwgLk5hbWVzID0gYygibiIsICJjb3VudCIsICJhdmciKSksIHN0cnVjdHVyZShsaXN0KG4gPSBjKDEsIAoyLCAzLCA0LCA1LCA2LCA3KSwgY291bnQgPSBjKDE0TCwgODBMLCAxNjVMLCAxNTNMLCA3NUwsIDEyTCwgCjFMKSwgYXZnID0gYyg5LjY5MTQyODU3MTQyODU3LCAxMC44Njg1NjI1LCAxMC44MDAyMDIwMjAyMDIsIDExLjA3MTYwMTMwNzE4OTUsIAoxMC44MDAzMiwgMTAuNzE2NjY2NjY2NjY2NywgMTEuMjI1NzE0Mjg1NzE0MykpLCBjbGFzcyA9IGMoInRibF9kZiIsIAoidGJsIiwgImRhdGEuZnJhbWUiKSwgcm93Lm5hbWVzID0gYyhOQSwgLTdMKSwgLk5hbWVzID0gYygibiIsIAoiY291bnQiLCAiYXZnIikpLCBzdHJ1Y3R1cmUobGlzdChuID0gYygxLCAyLCAzLCA0LCA1LCA2LCA3KSwgCiAgICBjb3VudCA9IGMoMTJMLCA4NUwsIDE3MUwsIDEzNkwsIDcyTCwgMjJMLCAyTCksIGF2ZyA9IGMoNi42MzkxNjY2NjY2NjY2NywgCiAgICA3Ljk3MDE3NjQ3MDU4ODI0LCA4LjI1OTQ1NDE5MTAzMzE0LCA4LjQ5ODQ5MjY0NzA1ODgyLCA4LjU1MjI3Nzc3Nzc3Nzc4LCAKICAgIDguNzMxNDM5MzkzOTM5MzksIDYuNzgwNzE0Mjg1NzE0MjkpKSwgY2xhc3MgPSBjKCJ0YmxfZGYiLCAKInRibCIsICJkYXRhLmZyYW1lIiksIHJvdy5uYW1lcyA9IGMoTkEsIC03TCksIC5OYW1lcyA9IGMoIm4iLCAKImNvdW50IiwgImF2ZyIpKSwgc3RydWN0dXJlKGxpc3QobiA9IGMoMSwgMiwgMywgNCwgNSwgNiwgNyksIAogICAgY291bnQgPSBjKDExTCwgNzVMLCAxMzdMLCAxOTBMLCA3NUwsIDExTCwgMUwpLCBhdmcgPSBjKDguODQwOTA5MDkwOTA5MDksIAogICAgOS4xNzQ2LCA4LjY1NzE3NzYxNTU3MTc4LCA5Ljk2NDMxNTc4OTQ3MzY4LCA5LjgwMjI0LCAxMS4wODEyMTIxMjEyMTIxLCAKICAgIDguNDQ1NzE0Mjg1NzE0MjgpKSwgY2xhc3MgPSBjKCJ0YmxfZGYiLCAidGJsIiwgImRhdGEuZnJhbWUiCiksIHJvdy5uYW1lcyA9IGMoTkEsIC03TCksIC5OYW1lcyA9IGMoIm4iLCAiY291bnQiLCAiYXZnIikpKQ==