#include <cstdio>
#include <cmath>
#include <cassert>
#include <complex>
#include <vector>
#include <type_traits>
using namespace std;
#define FFT_LEN 65536
const double pi = acos(-1);
vector<complex<double>> fft(const vector<complex<double>> &x, const int &inv) {
static bool fft_ready = false;
static complex<double> loli[FFT_LEN];
if (!fft_ready) {
for (int k = 0; k<FFT_LEN; k++) {
loli[k] = exp(complex<double>(0, 2 * pi*k / FFT_LEN));
}
fft_ready = true;
}
int n = x.size();
assert((n&-n) == n && n <= FFT_LEN && abs(inv) == 1);
vector<complex<double>> X = x;
for (int i = 1, j = 0; i<n; i++) {
for (int k = n >> 1; !((j ^= k)&k); k >>= 1);
if (i < j) {
swap(X[i], X[j]);
}
}
for (int i = 2; i <= n; i *= 2) {
int d = (inv == 1) ? FFT_LEN - (FFT_LEN / i) : FFT_LEN / i;
for (int j = 0; j<n; j += i) {
for (int k = 0, a = 0; k<i / 2; k++, a = (a + d) % FFT_LEN) {
complex<double> s = X[j + k], t = loli[a] * X[j + k + i / 2];
X[j + k] = s + t;
X[j + k + i / 2] = s - t;
}
}
}
if (inv == -1) {
for (int i = 0; i<(int)X.size(); i++) {
X[i] /= n;
}
}
return X;
}
template<class R> class polynomial {
private:
vector<R> a;
polynomial<R> slow_multiplication(const polynomial<R> &another) const {
if (!size() || !another.size()) {
return polynomial<R>();
}
polynomial<R> result(size() + another.size() - 1);
for (int i = 0; i<(int)size(); i++) for (int j = 0; j<(int)another.size(); j++) {
result[i + j] += a[i] * another[j];
}
return result;
}
public:
polynomial(const size_t &n = 0) {
a = vector<R>(n);
}
polynomial(const vector<R> &coef) {
a = coef;
}
size_t size() const {
return a.size();
}
void resize(const size_t &n) {
a.resize(n);
}
R& operator [](const int &i) {
assert(0 <= i && i<(int)a.size());
return a[i];
}
const R& operator [](const int &i) const {
assert(0 <= i && i<(int)a.size());
return a[i];
}
polynomial<complex<double>> operator*(const polynomial<complex<double>> &another) const {
int n = size() + another.size() - 1;
if (!size() || !another.size() || n <= 32) {
return slow_multiplication(another);
}
for (; (n&-n) != n; n += n&-n);
vector<complex<double>> x(n), y(n);
for (int i = 0; i<(int)size(); i++) {
x[i] = a[i];
}
for (int i = 0; i<(int)another.size(); i++) {
y[i] = another[i];
}
x = fft(x, 1);
y = fft(y, 1);
for (int i = 0; i<n; i++) {
x[i] *= y[i];
}
polynomial<complex<double>> result(fft(x, -1));
result.resize(size() + another.size() - 1);
return result;
}
template<class T>
polynomial<T> operator*(const polynomial<T> &another) const {
if (is_same<T, complex<double>>::value) {
} else if (is_same<T, double>::value || is_same<T, int>::value || is_same<T, long long>::value) {
polynomial<complex<double>> f(size()), g(another.size());
for (int i = 0; i<(int)size(); i++) {
f[i] = a[i];
}
for (int i = 0; i<(int)another.size(); i++) {
g[i] = another[i];
}
polynomial<complex<double>> h = f * g;
polynomial<T> result(h.size());
if (is_same<T, double>::value) {
for (int i = 0; i<(int)h.size(); i++) {
result[i] = h[i].real();
}
} else {
for (int i = 0; i<(int)h.size(); i++) {
result[i] = (T)floor(h[i].real() + 0.5);
}
}
return result;
} else {
return slow_multiplication(another);
}
}
};
int main() {
polynomial<int> f(2), g(2);
f[1] = 1, f[0] = 1;
g[1] = 1, g[0] = -1;
polynomial<int> h = f*g;
for (int i = (int)h.size() - 1; i >= 0; i--) {
printf("%d%c", h[i], i ? ' ' : '\n');
}
return 0;
}