import numpy as np
import matplotlib.pyplot as plt
import corner
n_samples = 10000
n_parameters = 3
samples = np.random.randn(n_samples, n_parameters)
fig = corner.corner(samples,
show_titles=True,
labels=['X1', 'X2', 'X3'])
axes = np.array(fig.axes).reshape((n_parameters, n_parameters))
for i in range(n_parameters):
for j in range(i + 1, n_parameters):
if i == j:
if i == 0 or i == 2:
axes[i, j].set_xscale('log')
if i > j:
if j == 0 or j == 2:
axes[i, j].set_xscale('linear')
if i == 0 or i == 2:
axes[i, j].set_yscale('log')
plt.show()
aW1wb3J0IG51bXB5IGFzIG5wCmltcG9ydCBtYXRwbG90bGliLnB5cGxvdCBhcyBwbHQKaW1wb3J0IGNvcm5lcgoKbl9zYW1wbGVzID0gMTAwMDAKbl9wYXJhbWV0ZXJzID0gMwpzYW1wbGVzID0gbnAucmFuZG9tLnJhbmRuKG5fc2FtcGxlcywgbl9wYXJhbWV0ZXJzKQoKZmlnID0gY29ybmVyLmNvcm5lcihzYW1wbGVzLAogICAgICAgICAgICAgICAgICAgIHNob3dfdGl0bGVzPVRydWUsCiAgICAgICAgICAgICAgICAgICAgbGFiZWxzPVsnWDEnLCAnWDInLCAnWDMnXSkKCmF4ZXMgPSBucC5hcnJheShmaWcuYXhlcykucmVzaGFwZSgobl9wYXJhbWV0ZXJzLCBuX3BhcmFtZXRlcnMpKQoKZm9yIGkgaW4gcmFuZ2Uobl9wYXJhbWV0ZXJzKToKICAgIGZvciBqIGluIHJhbmdlKGkgKyAxLCBuX3BhcmFtZXRlcnMpOgogICAgICAgIGlmIGkgPT0gajoKICAgICAgICAgICAgaWYgaSA9PSAwIG9yIGkgPT0gMjoKICAgICAgICAgICAgICAgIGF4ZXNbaSwgal0uc2V0X3hzY2FsZSgnbG9nJykKICAgICAgICBpZiBpID4gajoKICAgICAgICAgICAgaWYgaiA9PSAwIG9yIGogPT0gMjoKICAgICAgICAgICAgICAgIGF4ZXNbaSwgal0uc2V0X3hzY2FsZSgnbGluZWFyJykKICAgICAgICAgICAgaWYgaSA9PSAwIG9yIGkgPT0gMjoKICAgICAgICAgICAgICAgIGF4ZXNbaSwgal0uc2V0X3lzY2FsZSgnbG9nJykKCnBsdC5zaG93KCk=