from sklearn import neighbors, linear_model
import numpy as np
def train_new_data():
#sgd_clf = linear_model.SGDClassifier()
sgd_clf = linear_model.SGDClassifier(earning_rate = 'constant', eta0 = 0.1, shuffle = False, n_iter = 1,warm_start=True)
x1 = [[8, 9], [20, 22]]
y1 = [5, 6]
classes = np.unique(y1)
#print(classes)
sgd_clf.partial_fit(x1,y1,classes=classes)
x2 = [10, 12]
y2 = 8
x1.append(x2)
y1.append(y2)
classes = np.unique(y1)
sgd_clf.partial_fit([x2], [y2],classes=classes)
return sgd_clf
if __name__ == "__main__":
print(train_new_data().predict([[20,22]]))
ZnJvbSBza2xlYXJuIGltcG9ydCBuZWlnaGJvcnMsIGxpbmVhcl9tb2RlbAppbXBvcnQgbnVtcHkgYXMgbnAKIApkZWYgdHJhaW5fbmV3X2RhdGEoKToKIAogICAgI3NnZF9jbGYgPSBsaW5lYXJfbW9kZWwuU0dEQ2xhc3NpZmllcigpCiAKICAgIHNnZF9jbGYgPSBsaW5lYXJfbW9kZWwuU0dEQ2xhc3NpZmllcihlYXJuaW5nX3JhdGUgPSAnY29uc3RhbnQnLCBldGEwID0gMC4xLCBzaHVmZmxlID0gRmFsc2UsIG5faXRlciA9IDEsd2FybV9zdGFydD1UcnVlKQogCiAgICB4MSA9IFtbOCwgOV0sIFsyMCwgMjJdXSAgCiAgICB5MSA9IFs1LCA2XSAgCiAKICAgIGNsYXNzZXMgPSBucC51bmlxdWUoeTEpCiAKICAgICNwcmludChjbGFzc2VzKQogCiAgICBzZ2RfY2xmLnBhcnRpYWxfZml0KHgxLHkxLGNsYXNzZXM9Y2xhc3NlcykKIAogICAgeDIgPSBbMTAsIDEyXQogICAgeTIgPSA4CiAKICAgIHgxLmFwcGVuZCh4MikKICAgIHkxLmFwcGVuZCh5MikKIAogICAgY2xhc3NlcyA9IG5wLnVuaXF1ZSh5MSkKIAogICAgc2dkX2NsZi5wYXJ0aWFsX2ZpdChbeDJdLCBbeTJdLGNsYXNzZXM9Y2xhc3NlcykKIAogICAgcmV0dXJuIHNnZF9jbGYKIAogCiAKaWYgX19uYW1lX18gPT0gIl9fbWFpbl9fIjoKIAogICAgcHJpbnQodHJhaW5fbmV3X2RhdGEoKS5wcmVkaWN0KFtbMjAsMjJdXSkp