fork download
  1. from sklearn import neighbors, linear_model
  2. import numpy as np
  3.  
  4. def train_new_data():
  5.  
  6. #sgd_clf = linear_model.SGDClassifier()
  7.  
  8. sgd_clf = linear_model.SGDClassifier(earning_rate = 'constant', eta0 = 0.1, shuffle = False, n_iter = 1,warm_start=True)
  9.  
  10. x1 = [[8, 9], [20, 22]]
  11. y1 = [5, 6]
  12.  
  13. classes = np.unique(y1)
  14.  
  15. #print(classes)
  16.  
  17. sgd_clf.partial_fit(x1,y1,classes=classes)
  18.  
  19. x2 = [10, 12]
  20. y2 = 8
  21.  
  22. x1.append(x2)
  23. y1.append(y2)
  24.  
  25. classes = np.unique(y1)
  26.  
  27. sgd_clf.partial_fit([x2], [y2],classes=classes)
  28.  
  29. return sgd_clf
  30.  
  31.  
  32.  
  33. if __name__ == "__main__":
  34.  
  35. print(train_new_data().predict([[20,22]]))
Runtime error #stdin #stdout #stderr 0.04s 9420KB
stdin
Standard input is empty
stdout
Standard output is empty
stderr
Traceback (most recent call last):
  File "./prog.py", line 1, in <module>
ImportError: No module named 'sklearn'