fork download
  1. import math
  2. from decimal import Decimal
  3.  
  4. BIG_BUT_NOT_INFINITE = 1e30
  5. F = 100
  6. H = 80
  7.  
  8. def solve(F, H, pr_h=.5, eps=1e-6):
  9. # X(f, h) := expected number of flips to win given we need h heads out of f
  10. # flips and optimal strategy
  11. # X(f, h) := { 0 if h = 0
  12. # { X(F, H) if f < h
  13. # { min( otherwise
  14. # 1 + X(f-1, h-1) * Pr(h) + X(f-1, h) * (1 - Pr(h)),
  15. # X(F, H)
  16. # )
  17. #
  18. # X(f, h) depends on X(F, H) so it can't be computed.
  19. # So introduce X_est(F, H) as a guess for X(F, H).
  20. # And introduce X_conv(f, h) which is X(f, h) but it uses X_est(F, H)
  21. # instead of X(F, H) in the definition above.
  22. #
  23. # If X_est(F, H) <= X(F, H), then X_conv(F, H) = X_est(F, H).
  24. # This is because it will just "restart" and return X_est(F, H) immediately.
  25. # So we can find the largest value of X_est(F, H) for which X_conv(F, H) != X_est(F, H).
  26. # That should be the correct value of X_est(F, H).
  27.  
  28. pr_h_d = Decimal(pr_h)
  29. eps_d = Decimal(eps)
  30.  
  31. def x_conv(x_est):
  32. cache = {}
  33. def x(f, h):
  34. if h == 0: return 0
  35. if f < h: return x_est
  36.  
  37. cache_key = (f, h)
  38. if cache_key not in cache:
  39. do_flip = 1 + x(f-1, h-1) * pr_h_d + x(f-1, h) * (1 - pr_h_d)
  40. cache[cache_key] = min(do_flip, x_est)
  41. return cache[cache_key]
  42. return x
  43.  
  44. lo = Decimal(H)
  45. hi = Decimal(BIG_BUT_NOT_INFINITE)
  46. while hi - lo > eps_d:
  47. x_est_guess = (lo + hi) / Decimal(2)
  48. x_conv_guess = x_conv(x_est_guess)(F, H)
  49. if x_conv_guess == x_est_guess:
  50. lo = x_est_guess
  51. else:
  52. hi = x_est_guess
  53.  
  54. return x_conv(lo)
  55.  
  56. oracle = solve(F, H)
  57.  
  58. # How many flips at the start of the game?
  59. print(oracle(F, H))
  60. print(oracle(2, 2))
  61. print(oracle(20, 20))
  62. print(oracle(40, 40))
  63.  
Success #stdin #stdout 0.65s 15756KB
stdin
Standard input is empty
stdout
11211751612.15864487995165070
8408813710.618983659963738025
11211740921.79908853053598607
11211751612.15864487995165070