import java.util.ArrayList;
import java.util.List;
class NextBiggerPalindromeNumber {
/**
Given a number, find the next smallest palindrome
Given a number, find the next smallest palindrome larger than this number. For example, if the input number is “2 3 5 4 5″, the output should be “2 3 6 3 2″. And if the input number is “9 9 9″, the output should be “1 0 0 1″.
The input is assumed to be an array. Every entry in array represents a digit in input number. Let the array be ‘num[]’ and size of array be ‘n’
There can be three different types of inputs that need to be handled separately.
1) The input number is palindrome and has all 9s. For example “9 9 9″. Output should be “1 0 0 1″
2) The input number is not palindrome. For example “1 2 3 4″. Output should be “1 3 3 1″
3) The input number is palindrome and doesn’t have all 9s. For example “1 2 2 1″. Output should be “1 3 3 1″.
*/
public static void main
(String[] args
) { // for(int i=1;i<10;i++){
// System.out.println("i= "+i+" "+getMaxPalindromeOfLenthN(i));
// }
int num=0;
num=999;
System.
out.
println("num= "+num
+" palindrome ="+ getNextHigherPalnidromeNumber
(num
));
num=1234;
System.
out.
println("num= "+num
+" palindrome ="+ getNextHigherPalnidromeNumber
(num
));
num=191;
System.
out.
println("num= "+num
+" palindrome ="+ getNextHigherPalnidromeNumber
(num
));
}
public static int getNextHigherPalnidromeNumber(int input){
// Handle single digit numbers
if(input==9) return 11; // For 9 next palindrome is 11
if(input<9) return input+1; // for 0 to 8 next palindrome is next number
// So now number is two digits or more
// Separate out digits
int temp = input;
ArrayList<Integer> digitList = new ArrayList<Integer>();
while(temp>0){
digitList.add(temp%10);
temp = temp /10;
}
// digitList(0) is digit at unit place
// digitList(n) will be digit at highest place.
// Now check if input is equal to max palindrome of that length
// In that case next palindrome is min palindrome of lenght+1
if(input==getMaxPalindromeOfLenthN(digitList.size()))
return getMinPalindromeOfLenthN(digitList.size()+1);
// It is not max palindrome of that length. next palindrome is of same length as input.
/* if input is 1356 then we will start with first & digit same as input 1 _ _ 1
* Now we will call same function to get palindrome of internal number by striping first and last digit viz. 35. So function will return 44
* So answer is 1 4 4 1
*
* Now if number is 1996 the we will start with 1 _ _ 1
* Now we will call same function to get palindrome of internal number by striping first and last digit viz. 99. So function will return 101
* So it returned palindrome of length more than 2; it means we should increase outer digit
* 2 _ _ 2
* And we should fill it up with zeros so answer for 1996 is 2002
*
*/
// Strip first and last digit
// for number 7986 List is -> 6,8,9,7
// So starting with digit at index n-2 till index 1; prepare number
int outerdigit =digitList.get(digitList.size()-1);
// So 7 _ _ 7 is time being 7007.
int returnVal
= outerdigit
*(int)Math.
pow(10,digitList.
size()-1) + outerdigit
;
temp = 0;
for(int i=digitList.size()-2;i>=1;i--){
temp = temp*10 + digitList.get(i);
}
int palindromeForInnerNumber= getNextHigherPalnidromeNumber(temp);
// for inner number 99 palindrome will be 101. In this case we should increase higher number and use all zeros
// Inner number is of length digitList.size()-2. So palindrome of biggger length id digitList.size()-2+1
// For input number 79998 inner number is 999. And its palindrome is 1001.
// Now outer number was decided as 7 and we had prepared temporary palindrome as 7_ _7. So we should make it 8_ _ 8 means 8008
if(palindromeForInnerNumber==getMinPalindromeOfLenthN(digitList.size()-2+1)){
outerdigit++;
returnVal
= outerdigit
*(int)Math.
pow(10,digitList.
size()-1)+ outerdigit
; }else{
// For input 7865 palindrome is decided as 7_ _7 i.e. 7007. Inner number is 86. Its palindrome is 99.
// Now 99 is to be fit into middle slot. So we will multiply it by 10 and add into number
// 7007 + 99*10 = 7007 + 990= 7997
returnVal= returnVal+ palindromeForInnerNumber*10 ;
}
return returnVal;
}
public static int getMinPalindromeOfLenthN(int n){
/* For length min palindromes are as follows
* 1 1
* 2 11
* 3 101
* 4 1001
* 5 10001
*/
// So 1 is present at 10^(n-1) and unit digit
// so number is 10^(n-1) + 1
if(n==1)
return 1;
return (int)Math.
pow(10, n
-1) + 1; }
public static int getMaxPalindromeOfLenthN(int n){
/* For legth max palindromes are as follows
* 1 9
* 2 99
* 3 999
* 4 9999
*/
int num =0;
for(int i=1;i<=n;i++){
num = num*10+9;
}
return num;
}
}