#include <iostream>
#include <vector>
#include <algorithm>
#include <map>
using namespace std;
#define COUT(x) cout << #x << " = " << (x) << " (L" << __LINE__ << ")" << endl
template<class T1, class T2> ostream& operator << (ostream &s, pair<T1,T2> P)
{ return s << '<' << P.first << ", " << P.second << '>'; }
template<class T> ostream& operator << (ostream &s, vector<T> P)
{ for (int i = 0; i < P.size(); ++i) { if (i > 0) { s << " "; } s << P[i]; } return s; }
template<class T> ostream& operator << (ostream &s, vector<vector<T> > P)
{ for (int i = 0; i < P.size(); ++i) { s << endl << P[i]; } return s << endl; }
vector<int> calc(vector<int> f, long long p) {
int N = (int)f.size();
vector<int> res(N);
for (int i = 0; i < N; ++i) res[i] = i;
for (int i = 0; i < p; ++i) {
vector<int> tmp(N);
for (int j = 0; j < N; ++j) tmp[j] = f[res[j]];
res = tmp;
}
return res;
}
int sisuu(vector<int> f, int i) {
int v = f[i];
int con = 1;
while (v != i) v = f[v], ++con;
return con;
}
int max_sisuu(vector<int> f) {
int res = 1;
for (int i = 0; i < f.size(); ++i) {
res = max(res, sisuu(f, i));
}
return res;
}
vector<long long> all(int N, long long t) {
int MOD = 1000000007;
vector<int> f(N, 0), g(N, 0);
for (int i = 0; i < N; ++i) f[i] = g[i] = i;
map<vector<int>, long long> maf, mag;
do {
maf[calc(f, t)]++;
} while (next_permutation(f.begin(), f.end()));
do {
mag[calc(g, 2)]++;
} while (next_permutation(g.begin(), g.end()));
vector<long long> res(N+1, 0);
for (auto it : maf) {
int si = max_sisuu(it.first);
for (int k = si; k <= N; ++k) {
res[k] += it.second * mag[it.first];
}
}
return res;
}
int sub_all(int N, long long p, long long e) {
int res = 0;
vector<int> f(N), ans(N);
for (int i = 0; i < N; ++i) f[i] = i;
do {
auto g = calc(f, p);
bool ok = true;
for (int k = 0; k < N/e; ++k) {
for (int i = 0; i < e; ++i) {
if (g[k*e+i] != (k*e) + (i+1)%e) ok = false;
}
}
if (ok) ++res;
} while (next_permutation(f.begin(), f.end()));
return res;
}
long long GCD(long long x, long long y) {
if (y == 0) return x;
else return GCD(y, x % y);
}
// modint: mod 計算を int を扱うように扱える構造体
template<int MOD> struct Fp {
long long val;
constexpr Fp(long long v = 0) noexcept : val(v % MOD) {
if (val < 0) val += MOD;
}
constexpr int getmod() { return MOD; }
constexpr Fp operator - () const noexcept {
return val ? MOD - val : 0;
}
constexpr Fp operator + (const Fp& r) const noexcept { return Fp(*this) += r; }
constexpr Fp operator - (const Fp& r) const noexcept { return Fp(*this) -= r; }
constexpr Fp operator * (const Fp& r) const noexcept { return Fp(*this) *= r; }
constexpr Fp operator / (const Fp& r) const noexcept { return Fp(*this) /= r; }
constexpr Fp& operator += (const Fp& r) noexcept {
val += r.val;
if (val >= MOD) val -= MOD;
return *this;
}
constexpr Fp& operator -= (const Fp& r) noexcept {
val -= r.val;
if (val < 0) val += MOD;
return *this;
}
constexpr Fp& operator *= (const Fp& r) noexcept {
val = val * r.val % MOD;
return *this;
}
constexpr Fp& operator /= (const Fp& r) noexcept {
long long a = r.val, b = MOD, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
val = val * u % MOD;
if (val < 0) val += MOD;
return *this;
}
constexpr bool operator == (const Fp& r) const noexcept {
return this->val == r.val;
}
constexpr bool operator != (const Fp& r) const noexcept {
return this->val != r.val;
}
friend constexpr ostream& operator << (ostream &os, const Fp<MOD>& x) noexcept {
return os << x.val;
}
friend constexpr Fp<MOD> modpow(const Fp<MOD> &a, long long n) noexcept {
if (n == 0) return 1;
auto t = modpow(a, n / 2);
t = t * t;
if (n & 1) t = t * a;
return t;
}
};
// 二項係数ライブラリ
template<class T> struct BiCoef {
vector<T> fact_, inv_, finv_;
constexpr BiCoef() {}
constexpr BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {
init(n);
}
constexpr void init(int n) noexcept {
fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
int MOD = fact_[0].getmod();
for(int i = 2; i < n; i++){
fact_[i] = fact_[i-1] * i;
inv_[i] = -inv_[MOD%i] * (MOD/i);
finv_[i] = finv_[i-1] * inv_[i];
}
}
constexpr T com(int n, int k) const noexcept {
if (n < k || n < 0 || k < 0) return 0;
return fact_[n] * finv_[k] * finv_[n-k];
}
constexpr T fact(int n) const noexcept {
if (n < 0) return 0;
return fact_[n];
}
constexpr T inv(int n) const noexcept {
if (n < 0) return 0;
return inv_[n];
}
constexpr T finv(int n) const noexcept {
if (n < 0) return 0;
return finv_[n];
}
};
const int MOD = 1000000007;
using mint = Fp<MOD>;
BiCoef<mint> bc;
// e*k 人を、e 人の k グループに分ける方法の数
mint grouping(int e, int k) {
return bc.fact(k*e) * bc.finv(k) * modpow(bc.finv(e), k);
}
// res[k] = h を位数 e の巡回群の k 個の直積からなる 1 つの順列としたときに
// f^p = h となる f が何個あるか
vector<mint> sub(int N, long long p, long long e) {
int K = N / e;
// f を構成する巡回群の位数 d として、e = d / GCD(d, p) となる d のみを考える
vector<long long> D;
for (long long d = e; d <= N; d += e) {
if (e * GCD(d, p) == d) D.push_back(d);
}
// DP
vector<vector<mint>> dp(D.size()+1, vector<mint>(K+1, 0));
dp[0][0] = 1;
for (int i = 0; i < D.size(); ++i) {
int d = D[i];
int g = d / e;
mint mul = bc.fact(g - 1) * modpow(mint(e), g - 1);
for (int k = 0; k <= K; ++k) {
mint fac = 1;
for (int l = 0; k + l * g <= K; ++l) {
dp[i + 1][k + l * g] += dp[i][k] *
bc.com(k + l * g, k) * grouping(g, l) * fac;
fac *= mul;
}
}
}
/*
COUT("---------------------");
COUT(N); COUT(p); COUT(e);
COUT(D);
COUT(dp);
*/
return dp[D.size()];
}
mint solve(int N, long long X, long long Y, long long Z) {
if (X + Y + Z == 0) {
auto gdp = sub(N, 2, 1);
return gdp[N] * modpow(mint(N), N);
}
long long t = X - Y + Z;
if (t < 0) t = -t;
if (t == 0) {
auto gdp = sub(N, 2, 1);
return gdp[N] * bc.fact(N);
}
vector<vector<mint>> dp(N+1, vector<mint>(N+1, 0));
dp[0][0] = 1;
for (int e = 1; e <= N; ++e) {
const vector<mint>& fdp = sub(N, t, e);
const vector<mint>& gdp = sub(N, 2, e);
for (int n = 0; n <= N; ++n) {
mint fac = 1;
for (int k = 0; n + k * e <= N; ++k) {
dp[e][n + k * e] += dp[e - 1][n] *
bc.com(n + k * e, n) * grouping(e, k) * fac * fdp[k] * gdp[k];
fac *= bc.fact(e - 1);
/*
COUT("------------");
COUT(e);
COUT(k);
cout << n << " -> " << n + k*e << endl;
COUT( bc.com(n + k * e, n));
COUT(grouping(e, k));
COUT(modpow(bc.fact(e - 1), k));
COUT(fdp[k]);
COUT(gdp[k]);
*/
}
}
}
COUT(dp);
return dp[N][N];
}
int main() {
bc.init(5100);
int N;
long long X, Y, Z;
while (cin >> N >> X >> Y >> Z) {
cout << solve(N, X, Y, Z) << endl;
/*
long long t = X - Y + Z;
if (t < 0) t = -t;
cout << all(N, t) << endl;
*/
}
}