#read 1985 Auto Imports Database with arff file
library( foreign)
df <- read.arff ( "C:/dataset_9_autos.arff" )
#Find the outliers
#the function takes the name of the dataset and/or variable as parameter and returns the outliers, if any were found.
outliers = function ( x) {
boxplot( x, horizontal= FALSE, las= 2 , col = c( 'snow2' ) , cex.axis = 1 )
o = boxplot.stats ( x) $out
return ( o)
}
#compare all numerical variables with standarization
layout( 1 )
outliers( dfs)
#q-q plot for chi^2 distribution and normality check
library( MVN)
layout( 1 )
mardiaTest( dfn, cov = FALSE, qqplot = TRUE)
abline( a= 0 , b
I3JlYWQgMTk4NSBBdXRvIEltcG9ydHMgRGF0YWJhc2Ugd2l0aCBhcmZmIGZpbGUKCmxpYnJhcnkoZm9yZWlnbikKCmRmIDwtIHJlYWQuYXJmZigiQzovZGF0YXNldF85X2F1dG9zLmFyZmYiKQoKCgojRmluZCB0aGUgb3V0bGllcnMKCiN0aGUgZnVuY3Rpb24gdGFrZXMgdGhlIG5hbWUgb2YgdGhlIGRhdGFzZXQgYW5kL29yIHZhcmlhYmxlIGFzIHBhcmFtZXRlciBhbmQgcmV0dXJucyB0aGUgb3V0bGllcnMsIGlmIGFueSB3ZXJlIGZvdW5kLgoKb3V0bGllcnMgPSBmdW5jdGlvbih4KSB7CgogIGJveHBsb3QoeCwgaG9yaXpvbnRhbD1GQUxTRSwgbGFzPTIsIGNvbCA9IGMoJ3Nub3cyJyksIGNleC5heGlzPTEpCgogIG8gPSBib3hwbG90LnN0YXRzKHgpJG91dAoKICByZXR1cm4obykKCn0KCgoKI2NvbXBhcmUgYWxsIG51bWVyaWNhbCB2YXJpYWJsZXMgd2l0aCBzdGFuZGFyaXphdGlvbgoKbGF5b3V0KDEpCgpvdXRsaWVycyhkZnMpCgoKCiNxLXEgcGxvdCBmb3IgY2hpXjIgZGlzdHJpYnV0aW9uIGFuZCBub3JtYWxpdHkgY2hlY2sKCmxpYnJhcnkoTVZOKQoKbGF5b3V0KDEpCgptYXJkaWFUZXN0KGRmbiwgY292ID0gRkFMU0UsIHFxcGxvdCA9IFRSVUUpCgphYmxpbmUoYT0wLGI=