from collections import defaultdict
from heapq import heappush, heappop
def solution(A):
def prim(G):
vis = set()
start = next(iter(G))
vis.add(start)
Q, mst = [], []
for w, nei in G[start]:
heappush(Q, (w, start, nei))
while len(vis) < len(G):
w, src, dest = heappop(Q)
if dest in vis:
continue
vis.add(dest)
mst.append((src, dest, w))
for w, nei in G[dest]:
heappush(Q, (w, dest, nei))
return mst
N, M = A[0]
graph = defaultdict(list)
for i in range(1, len(A)):
if i % 2 == 1:
k, c = A[i]
else:
edges = A[i]
for ii in range(len(edges)):
for jj in range(ii + 1, len(edges)):
if edges[ii] < edges[jj]:
graph[edges[jj]].append((c, edges[ii]))
graph[edges[ii]].append((c, edges[jj]))
mst = prim(graph)
res = 0
s = set()
for x, y, w in mst:
res += w
s.update({x, y})
if sorted(s) != list(range(1, N + 1)):
print(-1)
else:
print(res)
A = [[10, 5], [6, 158260522], [1, 3, 6, 8, 9, 10], [10, 877914575], [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
[4, 602436426], [2, 6, 7, 9], [6, 24979445], [2, 3, 4, 5, 8, 10], [4, 861648772], [2, 4, 8, 9]]
solution(A)
ZnJvbSBjb2xsZWN0aW9ucyBpbXBvcnQgZGVmYXVsdGRpY3QKZnJvbSBoZWFwcSBpbXBvcnQgaGVhcHB1c2gsIGhlYXBwb3AKCgpkZWYgc29sdXRpb24oQSk6CiAgICBkZWYgcHJpbShHKToKICAgICAgICB2aXMgPSBzZXQoKQogICAgICAgIHN0YXJ0ID0gbmV4dChpdGVyKEcpKQogICAgICAgIHZpcy5hZGQoc3RhcnQpCiAgICAgICAgUSwgbXN0ID0gW10sIFtdCiAgICAgICAgZm9yIHcsIG5laSBpbiBHW3N0YXJ0XToKICAgICAgICAgICAgaGVhcHB1c2goUSwgKHcsIHN0YXJ0LCBuZWkpKQogICAgICAgIHdoaWxlIGxlbih2aXMpIDwgbGVuKEcpOgogICAgICAgICAgICB3LCBzcmMsIGRlc3QgPSBoZWFwcG9wKFEpCiAgICAgICAgICAgIGlmIGRlc3QgaW4gdmlzOgogICAgICAgICAgICAgICAgY29udGludWUKICAgICAgICAgICAgdmlzLmFkZChkZXN0KQogICAgICAgICAgICBtc3QuYXBwZW5kKChzcmMsIGRlc3QsIHcpKQogICAgICAgICAgICBmb3IgdywgbmVpIGluIEdbZGVzdF06CiAgICAgICAgICAgICAgICBoZWFwcHVzaChRLCAodywgZGVzdCwgbmVpKSkKICAgICAgICByZXR1cm4gbXN0CgogICAgTiwgTSA9IEFbMF0KICAgIGdyYXBoID0gZGVmYXVsdGRpY3QobGlzdCkKICAgIGZvciBpIGluIHJhbmdlKDEsIGxlbihBKSk6CiAgICAgICAgaWYgaSAlIDIgPT0gMToKICAgICAgICAgICAgaywgYyA9IEFbaV0KICAgICAgICBlbHNlOgogICAgICAgICAgICBlZGdlcyA9IEFbaV0KICAgICAgICAgICAgZm9yIGlpIGluIHJhbmdlKGxlbihlZGdlcykpOgogICAgICAgICAgICAgICAgZm9yIGpqIGluIHJhbmdlKGlpICsgMSwgbGVuKGVkZ2VzKSk6CiAgICAgICAgICAgICAgICAgICAgaWYgZWRnZXNbaWldIDwgZWRnZXNbampdOgogICAgICAgICAgICAgICAgICAgICAgICBncmFwaFtlZGdlc1tqal1dLmFwcGVuZCgoYywgZWRnZXNbaWldKSkKICAgICAgICAgICAgICAgICAgICAgICAgZ3JhcGhbZWRnZXNbaWldXS5hcHBlbmQoKGMsIGVkZ2VzW2pqXSkpCgogICAgbXN0ID0gcHJpbShncmFwaCkKICAgIHJlcyA9IDAKICAgIHMgPSBzZXQoKQogICAgZm9yIHgsIHksIHcgaW4gbXN0OgogICAgICAgIHJlcyArPSB3CiAgICAgICAgcy51cGRhdGUoe3gsIHl9KQoKICAgIGlmIHNvcnRlZChzKSAhPSBsaXN0KHJhbmdlKDEsIE4gKyAxKSk6CiAgICAgICAgcHJpbnQoLTEpCiAgICBlbHNlOgogICAgICAgIHByaW50KHJlcykKCgpBID0gW1sxMCwgNV0sIFs2LCAxNTgyNjA1MjJdLCBbMSwgMywgNiwgOCwgOSwgMTBdLCBbMTAsIDg3NzkxNDU3NV0sIFsxLCAyLCAzLCA0LCA1LCA2LCA3LCA4LCA5LCAxMF0sCiAgICAgWzQsIDYwMjQzNjQyNl0sIFsyLCA2LCA3LCA5XSwgWzYsIDI0OTc5NDQ1XSwgWzIsIDMsIDQsIDUsIDgsIDEwXSwgWzQsIDg2MTY0ODc3Ml0sIFsyLCA0LCA4LCA5XV0Kc29sdXRpb24oQSkK