/*
Problem "1517. Freedom of Choice" from acm.timus.ru
Solution: polynomial hash, sort, binary search, O(n log(n)^2)
*/
#include <stdio.h>
#include <cassert>
#include <algorithm>
#include <vector>
#include <random>
#include <chrono>
#include <string>
typedef unsigned long long ull;
// Generate random base in (before, after) open interval:
int gen_base(const int before, const int after) {
auto seed = std::chrono::high_resolution_clock::now().time_since_epoch().count();
std::mt19937 mt_rand(seed);
int base = std::uniform_int_distribution<int>(before+1, after)(mt_rand);
return base % 2 == 0 ? base-1 : base;
}
struct PolyHash {
// -------- Static variables --------
static const int mod = (int)1e9+123; // prime mod of polynomial hashing
static std::vector<int> pow1; // powers of base modulo mod
static std::vector<ull> pow2; // powers of base modulo 2^64
static int base; // base (point of hashing)
// --------- Static functons --------
static inline int diff(int a, int b) {
// Diff between `a` and `b` modulo mod (0 <= a < mod, 0 <= b < mod)
return (a -= b) < 0 ? a + mod : a;
}
// -------------- Variables of class -------------
std::vector<int> pref1; // Hash on prefix modulo mod
std::vector<ull> pref2; // Hash on prefix modulo 2^64
// Cunstructor from string:
PolyHash(const std::string& s)
: pref1(s.size()+1u, 0)
, pref2(s.size()+1u, 0)
{
assert(base < mod);
const int n = s.size(); // Firstly calculated needed power of base:
while ((int)pow1.size() <= n) {
pow1.push_back(1LL * pow1.back() * base % mod);
pow2.push_back(pow2.back() * base);
}
for (int i = 0; i < n; ++i) { // Fill arrays with polynomial hashes on prefix
assert(base > s[i]);
pref1[i+1] = (pref1[i] + 1LL * s[i] * pow1[i]) % mod;
pref2[i+1] = pref2[i] + s[i] * pow2[i];
}
}
// Polynomial hash of subsequence [pos, pos+len)
// If mxPow != 0, value automatically multiply on base in needed power. Finally base ^ mxPow
inline std::pair<int, ull> operator()(const int pos, const int len, const int mxPow = 0) const {
int hash1 = pref1[pos+len] - pref1[pos];
ull hash2 = pref2[pos+len] - pref2[pos];
if (hash1 < 0) hash1 += mod;
if (mxPow != 0) {
hash1 = 1LL * hash1 * pow1[mxPow-(pos+len-1)] % mod;
hash2 *= pow2[mxPow-(pos+len-1)];
}
return std::make_pair(hash1, hash2);
}
};
// Init static variables of PolyHash class:
int PolyHash::base((int)1e9+7);
std::vector<int> PolyHash::pow1{1};
std::vector<ull> PolyHash::pow2{1};
int main() {
// Input:
int n;
scanf("%d", &n);
char buf[1+100000];
scanf("%100000s", buf);
std::string a(buf);
scanf("%100000s", buf);
std::string b(buf);
// Calculate max neede power of base:
const int mxPow = std::max((int)a.size(), (int)b.size());
// Gen random base of hashing:
PolyHash::base = gen_base(256, PolyHash::mod);
// Create hashing objects from strings:
PolyHash hash_a(a), hash_b(b);
// Binary search by length of same subsequence:
int pos = -1, low = 0, high = std::min(a.size(), b.size())+1;
while (high - low > 1) {
int mid = (low + high) / 2;
std::vector<std::pair<int,ull>> hashes;
for (int i = 0; i + mid <= n; ++i) {
hashes.push_back(hash_a(i,mid,mxPow));
}
std::sort(hashes.begin(), hashes.end());
int p = -1;
for (int i = 0; i + mid <= n; ++i) {
if (std::binary_search(hashes.begin(), hashes.end(), hash_b(i, mid, mxPow))) {
p = i;
break;
}
}
if (p >= 0) {
low = mid;
pos = p;
} else {
high = mid;
}
}
assert(pos >= 0);
// Output answer:
printf("%s", b.substr(pos, low).c_str());
return 0;
}