// C++ program to merge k sorted arrays of size n each.
#include<iostream>
#include<limits.h>
using namespace std;
#define n 4
// A min heap node
struct MinHeapNode
{
int element; // The element to be stored
int i; // index of the array from which the element is taken
int j; // index of the next element to be picked from array
};
// Prototype of a utility function to swap two min heap nodes
void swap(MinHeapNode *x, MinHeapNode *y);
// A class for Min Heap
class MinHeap
{
MinHeapNode *harr; // pointer to array of elements in heap
int heap_size; // size of min heap
public:
// Constructor: creates a min heap of given size
MinHeap(MinHeapNode a[], int size);
// to heapify a subtree with root at given index
void MinHeapify(int );
// to get index of left child of node at index i
int left(int i) { return (2*i + 1); }
// to get index of right child of node at index i
int right(int i) { return (2*i + 2); }
// to get the root
MinHeapNode getMin() { return harr[0]; }
// to replace root with new node x and heapify() new root
void replaceMin(MinHeapNode x) { harr[0] = x; MinHeapify(0); }
};
// This function takes an array of arrays as an argument and
// All arrays are assumed to be sorted. It merges them together
// and prints the final sorted output.
int *mergeKArrays(int arr[][n], int k)
{
int *output = new int[n*k]; // To store output array
// Create a min heap with k heap nodes. Every heap node
// has first element of an array
MinHeapNode *harr = new MinHeapNode[k];
for (int i = 0; i < k; i++)
{
harr[i].element = arr[i][0]; // Store the first element
harr[i].i = i; // index of array
harr[i].j = 1; // Index of next element to be stored from array
}
MinHeap hp(harr, k); // Create the heap
// Now one by one get the minimum element from min
// heap and replace it with next element of its array
for (int count = 0; count < n*k; count++)
{
// Get the minimum element and store it in output
MinHeapNode root = hp.getMin();
output[count] = root.element;
// Find the next elelement that will replace current
// root of heap. The next element belongs to same
// array as the current root.
if (root.j < n)
{
root.element = arr[root.i][root.j];
root.j += 1;
}
// If root was the last element of its array
else root.element = INT_MAX; //INT_MAX is for infinite
// Replace root with next element of array
hp.replaceMin(root);
}
return output;
}
// FOLLOWING ARE IMPLEMENTATIONS OF STANDARD MIN HEAP METHODS
// FROM CORMEN BOOK
// Constructor: Builds a heap from a given array a[] of given size
MinHeap::MinHeap(MinHeapNode a[], int size)
{
heap_size = size;
harr = a; // store address of array
int i = (heap_size - 1)/2;
while (i >= 0)
{
MinHeapify(i);
i--;
}
}
// A recursive method to heapify a subtree with root at given index
// This method assumes that the subtrees are already heapified
void MinHeap::MinHeapify(int i)
{
int l = left(i);
int r = right(i);
int smallest = i;
if (l < heap_size && harr[l].element < harr[i].element)
smallest = l;
if (r < heap_size && harr[r].element < harr[smallest].element)
smallest = r;
if (smallest != i)
{
swap(&harr[i], &harr[smallest]);
MinHeapify(smallest);
}
}
// A utility function to swap two elements
void swap(MinHeapNode *x, MinHeapNode *y)
{
MinHeapNode temp = *x; *x = *y; *y = temp;
}
// A utility function to print array elements
void printArray(int arr[], int size)
{
for (int i=0; i < size; i++)
cout << arr[i] << " ";
}
// Driver program to test above functions
int main()
{
// Change n at the top to change number of elements
// in an array
int arr[][n] = {{2, 6, 12, 34},
{1, 9, 20, 1000},
{23, 34, 90, 2000}};
int k = sizeof(arr)/sizeof(arr[0]);
int *output = mergeKArrays(arr, k);
cout << "Merged array is " << endl;
printArray(output, n*k);
return 0;
}