# your code goes here
library(GEOquery)
library("ALL")
gse <- getGEO("GSE189086", GSEMatrix=TRUE,AnnotGPL = TRUE)
length(gse)
gse<-gse[[1]]
Data<-exprs(gse)
str(Data)
gse
Data.class<-class(Data)
Data.class
attributes(Data)
Data.dim<-dim(Data)
Data.dim
Data<-Data[1:20,]
attributes(Data)
dim(Data)
str(Data)
heatmap(Data)
mock<-Data[,c(1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31)]
infected<-Data[,c(2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32)]
#t-test
infected.summary <- summary(infected)
infected.summary
mock.summary <- summary(mock)
mock.summary
mock.mean<-apply(mock,1,mean,na.rm=TRUE)
infected.mean<-apply(infected, 1,mean,na.rm=TRUE)
Data.test<-t.test(x=mock,y=infected,var.equal=TRUE)
Data.test
#boxplot_for_control_test
boxplot(mock, notch=F,varwidth=T,main="Mock boxplot", outline=TRUE,las=2,col="#8EEC9C")
boxplot(infected, notch=F,varwidth=T,main="Infected boxplot", outline=TRUE,las=2,col="#F08080")
m<-rep("1",16)
i<-rep("0",16)
GeneSamples<-paste(m,i,sep = "",collapse = "")
sml<-strsplit(GeneSamples,split = "")[[1]]#notice
gs<-factor(sml)
ord <- order(gs)
groups <- make.names(c("mock","infected"))
palette(c("#B580F5", "#33DAFF"))
# order samples by group
boxplot(Data[,ord], boxwex=0.6, notch=F, main="boxplot", outline=FALSE, las=2, col=gs[ord])
legend("topright",groups, fill=palette(), bty="n")
#scatterplot
pairs(~mock+infected,data = Data,main = "Scatterplot Matrix",pch=20,col="#FCBDBD")
#Mock_Infected scatterplot
plot(mock,infected,xlab = "infected",ylab = "mock",pch=20,col="#F1A78D"
,cex=1, main="Mock_Infected scatterplot" )
IyB5b3VyIGNvZGUgZ29lcyBoZXJlCmxpYnJhcnkoR0VPcXVlcnkpCmxpYnJhcnkoIkFMTCIpCmdzZSA8LSBnZXRHRU8oIkdTRTE4OTA4NiIsIEdTRU1hdHJpeD1UUlVFLEFubm90R1BMID0gVFJVRSkKbGVuZ3RoKGdzZSkKZ3NlPC1nc2VbWzFdXQpEYXRhPC1leHBycyhnc2UpCnN0cihEYXRhKQpnc2UKRGF0YS5jbGFzczwtY2xhc3MoRGF0YSkKRGF0YS5jbGFzcwphdHRyaWJ1dGVzKERhdGEpCkRhdGEuZGltPC1kaW0oRGF0YSkKRGF0YS5kaW0KRGF0YTwtRGF0YVsxOjIwLF0KYXR0cmlidXRlcyhEYXRhKQpkaW0oRGF0YSkKc3RyKERhdGEpCmhlYXRtYXAoRGF0YSkKbW9jazwtRGF0YVssYygxLDMsNSw3LDksMTEsMTMsMTUsMTcsMTksMjEsMjMsMjUsMjcsMjksMzEpXQppbmZlY3RlZDwtRGF0YVssYygyLDQsNiw4LDEwLDEyLDE0LDE2LDE4LDIwLDIyLDI0LDI2LDI4LDMwLDMyKV0KI3QtdGVzdAppbmZlY3RlZC5zdW1tYXJ5IDwtIHN1bW1hcnkoaW5mZWN0ZWQpCmluZmVjdGVkLnN1bW1hcnkKbW9jay5zdW1tYXJ5IDwtIHN1bW1hcnkobW9jaykKbW9jay5zdW1tYXJ5Cm1vY2subWVhbjwtYXBwbHkobW9jaywxLG1lYW4sbmEucm09VFJVRSkKaW5mZWN0ZWQubWVhbjwtYXBwbHkoaW5mZWN0ZWQsIDEsbWVhbixuYS5ybT1UUlVFKQpEYXRhLnRlc3Q8LXQudGVzdCh4PW1vY2sseT1pbmZlY3RlZCx2YXIuZXF1YWw9VFJVRSkKRGF0YS50ZXN0CiNib3hwbG90X2Zvcl9jb250cm9sX3Rlc3QKYm94cGxvdChtb2NrLCBub3RjaD1GLHZhcndpZHRoPVQsbWFpbj0iTW9jayBib3hwbG90Iiwgb3V0bGluZT1UUlVFLGxhcz0yLGNvbD0iIzhFRUM5QyIpCmJveHBsb3QoaW5mZWN0ZWQsIG5vdGNoPUYsdmFyd2lkdGg9VCxtYWluPSJJbmZlY3RlZCBib3hwbG90Iiwgb3V0bGluZT1UUlVFLGxhcz0yLGNvbD0iI0YwODA4MCIpCm08LXJlcCgiMSIsMTYpCmk8LXJlcCgiMCIsMTYpCkdlbmVTYW1wbGVzPC1wYXN0ZShtLGksc2VwID0gIiIsY29sbGFwc2UgPSAiIikKc21sPC1zdHJzcGxpdChHZW5lU2FtcGxlcyxzcGxpdCA9ICIiKVtbMV1dI25vdGljZQpnczwtZmFjdG9yKHNtbCkKb3JkIDwtIG9yZGVyKGdzKQpncm91cHMgPC0gbWFrZS5uYW1lcyhjKCJtb2NrIiwiaW5mZWN0ZWQiKSkKcGFsZXR0ZShjKCIjQjU4MEY1IiwgIiMzM0RBRkYiKSkKIyBvcmRlciBzYW1wbGVzIGJ5IGdyb3VwCmJveHBsb3QoRGF0YVssb3JkXSwgYm94d2V4PTAuNiwgbm90Y2g9RiwgbWFpbj0iYm94cGxvdCIsIG91dGxpbmU9RkFMU0UsIGxhcz0yLCBjb2w9Z3Nbb3JkXSkKbGVnZW5kKCJ0b3ByaWdodCIsZ3JvdXBzLCBmaWxsPXBhbGV0dGUoKSwgYnR5PSJuIikKI3NjYXR0ZXJwbG90CnBhaXJzKH5tb2NrK2luZmVjdGVkLGRhdGEgPSBEYXRhLG1haW4gPSAiU2NhdHRlcnBsb3QgTWF0cml4IixwY2g9MjAsY29sPSIjRkNCREJEIikKI01vY2tfSW5mZWN0ZWQgc2NhdHRlcnBsb3QKcGxvdChtb2NrLGluZmVjdGVkLHhsYWIgPSAiaW5mZWN0ZWQiLHlsYWIgPSAibW9jayIscGNoPTIwLGNvbD0iI0YxQTc4RCIKICAgICAsY2V4PTEsIG1haW49Ik1vY2tfSW5mZWN0ZWQgc2NhdHRlcnBsb3QiICkKCg==