import numpy as np
from keras.models import Sequential
from keras.layers import Dense
# create some dummy data
X = np.random.rand(100, 10)
y = np.random.randint(2, size=100)
# define the model
model = Sequential()
model.add(Dense(8, input_dim=10, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# compile the model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# fit the model on the data
model.fit(X, y, epochs=10, batch_size=16)
# evaluate the model on new data
X_test = np.random.rand(10, 10)
y_pred = model.predict(X_test)
print(y_pred)
aW1wb3J0IG51bXB5IGFzIG5wCmZyb20ga2VyYXMubW9kZWxzIGltcG9ydCBTZXF1ZW50aWFsCmZyb20ga2VyYXMubGF5ZXJzIGltcG9ydCBEZW5zZQoKIyBjcmVhdGUgc29tZSBkdW1teSBkYXRhClggPSBucC5yYW5kb20ucmFuZCgxMDAsIDEwKQp5ID0gbnAucmFuZG9tLnJhbmRpbnQoMiwgc2l6ZT0xMDApCgojIGRlZmluZSB0aGUgbW9kZWwKbW9kZWwgPSBTZXF1ZW50aWFsKCkKbW9kZWwuYWRkKERlbnNlKDgsIGlucHV0X2RpbT0xMCwgYWN0aXZhdGlvbj0ncmVsdScpKQptb2RlbC5hZGQoRGVuc2UoMSwgYWN0aXZhdGlvbj0nc2lnbW9pZCcpKQoKIyBjb21waWxlIHRoZSBtb2RlbAptb2RlbC5jb21waWxlKGxvc3M9J2JpbmFyeV9jcm9zc2VudHJvcHknLCBvcHRpbWl6ZXI9J2FkYW0nLCBtZXRyaWNzPVsnYWNjdXJhY3knXSkKCiMgZml0IHRoZSBtb2RlbCBvbiB0aGUgZGF0YQptb2RlbC5maXQoWCwgeSwgZXBvY2hzPTEwLCBiYXRjaF9zaXplPTE2KQoKIyBldmFsdWF0ZSB0aGUgbW9kZWwgb24gbmV3IGRhdGEKWF90ZXN0ID0gbnAucmFuZG9tLnJhbmQoMTAsIDEwKQp5X3ByZWQgPSBtb2RlbC5wcmVkaWN0KFhfdGVzdCkKcHJpbnQoeV9wcmVkKQo=