fork download
  1. PROGRAM cluster
  2. !--------------------------------------------------------!
  3. ! Example Molecular Dynamics Program ver.2.2 !
  4. ! !
  5. ! [プログラム概要] !
  6. ! ・ヴェルレ法による時間発展(数値積分) !
  7. ! ・N粒子孤立系に対するNVEアンサンブル !
  8. ! ・Lennard-Jones (12-6) ポテンシャル !
  9. ! !
  10. ! [改訂履歴] !
  11. ! 2002.10.05 ver 1.0 岡田 勇 !
  12. ! 2011.06.08 ver 2.0 北 幸海 (Fortran 90化) !
  13. ! 2020.12.14 ver 2.1 北 幸海 (単純化) !
  14. ! 2020.12.15 ver 2.2 北 幸海 (ウェブ実習用に標準出力化) !
  15. !--------------------------------------------------------!
  16. IMPLICIT NONE
  17.  
  18. !----- 固定変数 (変更しないこと) -----
  19. INTEGER, PARAMETER :: &
  20. NpTot = 2 ! 粒子数
  21. REAL(8), PARAMETER :: &
  22. Eps = 1.d0, & ! L-Jポテンシャルのパラメータ1
  23. Sigma = 1.d0, & ! L-Jポテンシャルのパラメータ2
  24. Mass = 1.d0 ! 粒子の質量
  25.  
  26.  
  27. !----- ユーザー変数 (課題に応じて変更する変数) -----
  28. ! Dt: 時間ステップ
  29. ! MDStep: ステップ数(繰り返しの回数)
  30. ! --> Dt = 1.d-2〜1.d-3が適当. Dt*MDStep= 1〜3 とする.
  31. ! --> サーバーに負荷をかけないよう Dt ≧ 1.d-5 とする
  32. INTEGER, PARAMETER :: MDStep = 2000 ! 総ステップ数
  33. REAL(8), PARAMETER :: Dt = 1.d-3 ! 時間ステップ
  34. REAL(8), PARAMETER :: R2_ini = 0.56d0 ! 粒子2の初期位置
  35. REAL(8), PARAMETER :: V2_ini = -0.2d0 ! 粒子2の初速
  36. INTEGER, PARAMETER :: NOut = 100 ! 出力データ数(MDStep以下で100を超えない整数)
  37.  
  38.  
  39. !----- 以下の変数・配列はプログラム内で自動更新 -----
  40. INTEGER i
  41. INTEGER :: NSum = 0, & ! 蓄積の回数
  42. n = 0, & ! 現在のステップ数
  43. PrintInt = 1 ! 出力間隔
  44. REAL(8) :: &
  45. R0(3, NpTot) = 0.d0, & ! 初期位置
  46. V(3, NpTot) = 0.d0, & ! 速度
  47. R(3, NpTot) = 0.d0, & ! 位置
  48. dR(3, NpTot) = 0.d0, & ! 初期位置からの変位
  49. dR_prev(3, NpTot) = 0.d0, & ! 時刻t(n-1)とt(n)間の変位
  50. dR_next(3, NpTot) = 0.d0, & ! 時刻t(n)とt(n+1)間の変位
  51. F(3, NpTot) = 0.d0, & ! 力
  52. T = 0.d0, & ! 運動エネルギー
  53. P = 0.d0, & ! ポテンシャルエネルギー
  54. H = 0.d0, & ! 全エネルギー(ハミルトニアン)
  55. H0 = 0.d0, & ! 計算開始時の全エネルギー
  56. V0 = 0.d0, & ! 計算開始時の平均速度
  57. MaxErrH = 0.d0, & ! ハミルトニアンの最大誤差
  58. SumH = 0.d0, & ! 蓄積されたハミルトニアン
  59. SumH2 = 0.d0, & ! 蓄積されたハミルトニアンの二乗
  60. SumT = 0.d0, & ! 蓄積された運動エネルギー
  61. SumT2 = 0.d0 ! 蓄積された運動エネルギーの二乗
  62.  
  63.  
  64. !----- Safety net -----
  65. if (Dt*MDStep > 3.d0) then
  66. write(6,*) 'Too long simulation time !!'
  67. stop
  68. endif
  69.  
  70.  
  71. !----- 各種設定値の出力 -----
  72. PrintInt = MDStep/NOut
  73. write(6,*) '=============================='
  74. write(6,*) 'MD simulation by Verlet method'
  75. write(6,*) '=============================='
  76. write(6,*) ' # of particles = ', NpTot
  77. write(6,*) ' L-J parameters:'
  78. write(6,*) ' --> Epsilon = ', Eps
  79. write(6,*) ' --> Sigma = ', Sigma
  80. write(6,*) ' Mass of particle = ', Mass
  81. write(6,*) ' Time step = ', Dt
  82. write(6,*) ' # of MD steps = ', MDStep
  83. write(6,*) ' Simulation time = ', Dt*real(MDStep,8)
  84. write(6,*) ' Print interval = ', Dt*real(PrintInt,8)
  85. write(6,*)
  86.  
  87.  
  88. !----- 粒子の初期情報の設定 -----
  89. ! 初期位置
  90. R0(1,2) = R2_ini ! 粒子1
  91. R0(1,1) = -R0(1,2) ! 粒子2
  92.  
  93. ! 初速
  94. V(1,2) = V2_ini ! 粒子1
  95. V(1,1) = -V(1,2) ! 粒子2
  96.  
  97. ! 初速度の大きさの平均値
  98. V0= 0.d0
  99. do i=1, NpTot
  100. V0= V0 + V(1,i)**2 + V(2,i)**2 + V(3,i)**2
  101. enddo ! i
  102. V0= sqrt(V0/real(NpTot,8))
  103.  
  104.  
  105. !----- 0ステップ目での力の計算 -----
  106. call ForcePotential (NpTot, n, MDStep, R0, dR, Eps, Sigma, P, F)
  107.  
  108.  
  109. !----- 1ステップ目の座標を計算 -----
  110. call Verlet (NpTot, n, MDStep, NSum, Dt, Mass, R0, P, R, F, V, &
  111. dR, dR_prev, dR_next, H, T, SumH, SumH2, SumT, SumT2)
  112.  
  113.  
  114. !----- ハミルトニアンの初期値を保存 -----
  115. H0 = H
  116.  
  117.  
  118. !----- 出力 -----
  119. ! ヘッダー情報の出力
  120. write(6,'(a)') '#time, position, velocity, kinetic, potential, hamiltonian'
  121.  
  122. ! 位置、速度などの出力.
  123. call Output (0, PrintInt, NpTot, n, MDStep, NSum, Dt, R, H, T, P, V, &
  124. H0, V0, SumH, SumH2, SumT, SumT2, MaxErrH)
  125.  
  126.  
  127. !----- 2ステップ目以降の時間発展 -----
  128. do n= 1, MDStep
  129.  
  130. ! nステップ目での力の計算
  131. call ForcePotential (NpTot, n, MDStep, R0, dR, Eps, Sigma, P, F)
  132.  
  133. ! (n+1)ステップ目の座標を計算
  134. call Verlet (NpTot, n, MDStep, NSum, Dt, Mass, R0, P, R, F, V, &
  135. dR, dR_prev, dR_next, H, T, SumH, SumH2, SumT, SumT2)
  136.  
  137. ! 出力
  138. call Output (0, PrintInt, NpTot, n, MDStep, NSum, Dt, R, H, T, P, V, &
  139. H0, V0, SumH, SumH2, SumT, SumT2, MaxErrH)
  140.  
  141. enddo ! n
  142.  
  143.  
  144. !----- 各種平均値を出力 -----
  145. call Output (1, PrintInt, NpTot, n, MDStep, NSum, Dt, R, H, T, P, V, &
  146. H0, V0, SumH, SumH2, SumT, SumT2, MaxErrH)
  147.  
  148. write(6,*) ' Done.'
  149. write(6,*)
  150.  
  151. !----- 主プログラムの終了 -----
  152. END PROGRAM cluster
  153.  
  154.  
  155.  
  156. SUBROUTINE ForcePotential(NpTot, n, MDStep, R0, dR, Eps, Sigma, P, F)
  157. !----------------------------------!
  158. ! ポテンシャルエネルギーと力の計算 !
  159. !----------------------------------!
  160. IMPLICIT NONE
  161. INTEGER, INTENT(in) :: NpTot, n, MDStep
  162. REAL(8), INTENT(in) :: R0(3,NpTot), dR(3,NpTot), Eps, Sigma
  163. REAL(8), INTENT(inout) :: P, F(3,NpTot)
  164. ! Local stuff
  165. INTEGER i, j
  166. REAL(8) R1, R2, Rij(3), dpdr, drdv(3)
  167.  
  168. F(:,:)=0.d0 ; P=0.d0
  169.  
  170. do i= 1, NpTot
  171. do j= 1, NpTot
  172.  
  173. if (i /= j) then
  174.  
  175. ! dR: displacement from time 0 to time n
  176. Rij(:) = (dR(:,j) - dR(:,i)) + (R0(:,j) - R0(:,i))
  177. R2 = Rij(1)**2 + Rij(2)**2 + Rij(3)**2
  178. R1 = sqrt(R2)
  179.  
  180. ! potential energy
  181. P = P + 4.d0 * Eps * ((Sigma**2/R2)**6 - (Sigma**2/R2)**3)
  182.  
  183. ! force
  184. dpdr = 4.d0 * Eps * (-12.d0*(Sigma**2/R2)**6 + 6.d0*(Sigma**2/R2)**3) / R1
  185. drdv(:) = -Rij(:) / R1
  186. F(:,i) = F(:,i) - dpdr*drdv(:)
  187.  
  188. endif ! i /= j
  189.  
  190. enddo ! j
  191. enddo ! i
  192.  
  193. P = 0.5d0*P
  194.  
  195. return
  196. END SUBROUTINE ForcePotential
  197.  
  198.  
  199.  
  200. SUBROUTINE Verlet(NpTot, n, MDStep, NSum, Dt, Mass, R0, P, R, F, V, &
  201. dR, dR_prev, dR_next, H, T, SumH, SumH2, SumT, SumT2)
  202. !--------------------------!
  203. ! Verlet法による座標の更新 !
  204. !--------------------------!
  205. IMPLICIT NONE
  206. INTEGER, INTENT(in) :: NpTot, n, MDStep
  207. INTEGER, INTENT(inout) :: NSum
  208. REAL(8), INTENT(in) :: R0(3,NpTot), P, Dt, Mass
  209. REAL(8), INTENT(inout) :: R(3,NpTot), F(3,NpTot), V(3,NpTot), dR(3,NpTot), &
  210. dR_prev(3,NpTot), dR_next(3,NpTot), H, T, SumH, &
  211. SumH2, SumT, SumT2
  212. ! Local stuff
  213. INTEGER i
  214.  
  215. !----- 0-th step -----
  216. if (n == 0) then
  217. ! current position
  218. R(:,:) = R0(:,:)
  219.  
  220. ! dR = dR_next = R(Δt) - R(0) = V(0)Δt + a(0)*(Δt)^2/2
  221. do i= 1, NpTot
  222. dR_next(:,i) = V(:,i)*Dt + 0.5d0*F(:,i)*Dt**2/Mass
  223. dR(:,i) = dR_next(:,i)
  224. enddo ! i
  225.  
  226.  
  227. !----- later steps -----
  228. elseif (n >= 1) then
  229. ! current position
  230. R(:,:) = R0(:,:) + dR(:,:)
  231.  
  232. ! dR_next = R(t+Δt) - R(t) = R(t) - R(t-Δt) + a(t)*(Δt)^2
  233. ! dR_prev = R(t) - R(t-Δt)
  234. ! dR = R(t+Δt) - R(0)
  235. do i= 1, NpTot
  236. dR_next(:,i) = dR_prev(:,i) + F(:,i)*Dt**2/Mass
  237. dR(:,i) = dR(:,i) + dR_next(:,i)
  238. V(:,i) = 0.5d0 * (dR_next(:,i) + dR_prev(:,i)) / Dt
  239. enddo
  240.  
  241. endif
  242.  
  243.  
  244. !----- Renaming for use at the next step -----
  245. dR_prev(:,:)= dR_next(:,:)
  246.  
  247.  
  248. !----- 運動エネルギーの計算 -----
  249. T = 0.d0
  250. do i= 1, NpTot
  251. T = T + 0.5d0 * Mass * (V(1,i)**2 + V(2,i)**2 + V(3,i)**2)
  252. enddo
  253.  
  254.  
  255. !----- ハミルトニアンの計算 -----
  256. H = T + P
  257.  
  258.  
  259. !----- 蓄積 -----
  260. NSum = NSum + 1 ! 蓄積の回数
  261. SumH = SumH + H ! ハミルトニアン
  262. SumH2 = SumH2 + H**2 ! ハミルトニアンの2乗
  263. SumT = SumT + T ! 運動エネルギー
  264. SumT2 = SumT2 + T**2 ! 運動エネルギーの2乗
  265.  
  266. return
  267. END SUBROUTINE Verlet
  268.  
  269.  
  270.  
  271. SUBROUTINE Output(mode, PrintInt, NpTot, n, MDStep, NSum, Dt, R, H, T, P, V, H0, V0, &
  272. SumH, SumH2, SumT, SumT2, MaxErrH)
  273. !------------!
  274. ! 結果の出力 !
  275. !------------!
  276. IMPLICIT NONE
  277. INTEGER, INTENT(in) :: mode, PrintInt, NpTot, n, MDStep, NSum
  278. REAL(8), INTENT(in) :: Dt, R(3,NpTot), H, T, P, V(3,NpTot), H0, V0, SumH, SumH2, SumT, SumT2
  279. REAL(8), INTENT(inout) :: MaxErrH
  280. ! Local stuff
  281. REAL(8) time, AveH, AveH2, AveT, AveT2, RMSD_H, RMSD_T
  282.  
  283. if (mode == 0) then
  284. !----- Output data at the current time -----
  285. time = Dt*real(n,8)
  286.  
  287. if ( (n==MDStep) .or. (mod(n,PrintInt)==0) ) &
  288. write(6, '( e12.6, 4(e14.6), e23.15 )') time, R(1,2), V(1,2), T, P, H
  289.  
  290. MaxErrH= max(MaxErrH, abs(H-H0)) ! Maximum error in Hamiltonian
  291.  
  292.  
  293. elseif (mode == 1) then
  294. !----- Compute root mean square deviation (RMSD) -----
  295. ! compute averages
  296. AveH = SumH /real(NSum,8) ! ハミルトニアン
  297. AveH2 = SumH2/real(NSum,8) ! ハミルトニアンの2乗
  298. AveT = SumT /real(NSum,8) ! 運動エネルギー
  299. AveT2 = SumT2/real(NSum,8) ! 運動エネルギーの2乗
  300.  
  301. ! compute RMSD
  302. RMSD_H = sqrt(abs(AveH2-AveH**2))
  303. RMSD_T = sqrt(abs(AveT2-AveT**2))
  304.  
  305. ! print
  306. write(6, *)
  307. write(6, *) '---------'
  308. write(6, *) ' Summary '
  309. write(6, *) '---------'
  310. write(6, '( a, e23.15 )') 'Dt =', Dt
  311. write(6, '( a, e23.15 )') 'V0 =', V0
  312. write(6, '( a, e23.15 )') 'RMSD(H) =', RMSD_H
  313. write(6, '( a, e23.15 )') 'Max. err.(H) =', MaxErrH
  314. write(6, '( a, e23.15 )') 'Final pos. =', R(1,2)
  315. write(6, '( 2(a, e23.15) )') '<H>=', AveH, ' +- ', RMSD_H
  316. write(6, '( 2(a, e23.15) )') '<T>=', AveT, ' +- ', RMSD_T
  317. write(6, '( a, i10 )') 'Norm. const.(NSum)= ', NSum
  318.  
  319. endif
  320.  
  321. return
  322. END SUBROUTINE Output
  323.  
Success #stdin #stdout 0.01s 5280KB
stdin
Standard input is empty
stdout
 ==============================
 MD simulation by Verlet method
 ==============================
  # of particles    =            2
  L-J parameters:
    --> Epsilon     =    1.0000000000000000     
    --> Sigma       =    1.0000000000000000     
  Mass of particle  =    1.0000000000000000     
  Time step         =    1.0000000000000000E-003
  # of MD steps     =         2000
  Simulation time   =    2.0000000000000000     
  Print interval    =    2.0000000000000000E-002

#time,  position,  velocity,  kinetic,  potential,  hamiltonian
0.000000E+00  0.560000E+00 -0.200000E+00  0.400000E-01 -0.999824E+00 -0.959824112927727E+00
0.200000E-01  0.556062E+00 -0.192137E+00  0.369165E-01 -0.996741E+00 -0.959824132502050E+00
0.400000E-01  0.552385E+00 -0.173703E+00  0.301729E-01 -0.989997E+00 -0.959823992002629E+00
0.600000E-01  0.549186E+00 -0.144391E+00  0.208487E-01 -0.980672E+00 -0.959823682215340E+00
0.800000E-01  0.546677E+00 -0.104974E+00  0.110196E-01 -0.970843E+00 -0.959823270567371E+00
0.100000E+00  0.545041E+00 -0.575551E-01  0.331258E-02 -0.963135E+00 -0.959822900857403E+00
0.120000E+00  0.544406E+00 -0.549883E-02  0.302372E-04 -0.959853E+00 -0.959822732398085E+00
0.140000E+00  0.544824E+00  0.470100E-01  0.220994E-02 -0.962033E+00 -0.959822844968128E+00
0.160000E+00  0.546261E+00  0.957035E-01  0.915916E-02 -0.968982E+00 -0.959823184802990E+00
0.180000E+00  0.548602E+00  0.136997E+00  0.187683E-01 -0.978592E+00 -0.959823601387701E+00
0.200000E+00  0.551675E+00  0.168511E+00  0.283960E-01 -0.988220E+00 -0.959823940737321E+00
0.220000E+00  0.555271E+00  0.189206E+00  0.357989E-01 -0.995623E+00 -0.959824117714160E+00
0.240000E+00  0.559172E+00  0.199195E+00  0.396787E-01 -0.999503E+00 -0.959824127924797E+00
0.260000E+00  0.563173E+00  0.199387E+00  0.397552E-01 -0.999579E+00 -0.959824016998371E+00
0.280000E+00  0.567091E+00  0.191116E+00  0.365253E-01 -0.996349E+00 -0.959823843302158E+00
0.300000E+00  0.570771E+00  0.175852E+00  0.309239E-01 -0.990748E+00 -0.959823654773720E+00
0.320000E+00  0.574088E+00  0.155014E+00  0.240292E-01 -0.983853E+00 -0.959823481628965E+00
0.340000E+00  0.576943E+00  0.129876E+00  0.168677E-01 -0.976691E+00 -0.959823338477628E+00
0.360000E+00  0.579262E+00  0.101538E+00  0.103100E-01 -0.970133E+00 -0.959823229583058E+00
0.380000E+00  0.580990E+00  0.709339E-01  0.503161E-02 -0.964855E+00 -0.959823153830940E+00
0.400000E+00  0.582090E+00  0.388617E-01  0.151023E-02 -0.961333E+00 -0.959823108274685E+00
0.420000E+00  0.582539E+00  0.602353E-02  0.362829E-04 -0.959859E+00 -0.959823090277154E+00
0.440000E+00  0.582330E+00 -0.269310E-01  0.725276E-03 -0.960548E+00 -0.959823098614433E+00
0.460000E+00  0.581465E+00 -0.593603E-01  0.352365E-02 -0.963347E+00 -0.959823133866438E+00
0.480000E+00  0.579963E+00 -0.905867E-01  0.820596E-02 -0.968029E+00 -0.959823198239387E+00
0.500000E+00  0.577855E+00 -0.119852E+00  0.143645E-01 -0.974188E+00 -0.959823294751907E+00
0.520000E+00  0.575188E+00 -0.146276E+00  0.213966E-01 -0.981220E+00 -0.959823425517342E+00
0.540000E+00  0.572030E+00 -0.168822E+00  0.285008E-01 -0.988324E+00 -0.959823588743621E+00
0.560000E+00  0.568469E+00 -0.186278E+00  0.346996E-01 -0.994523E+00 -0.959823774236377E+00
0.580000E+00  0.564621E+00 -0.197272E+00  0.389163E-01 -0.998740E+00 -0.959823957994063E+00
0.600000E+00  0.560631E+00 -0.200336E+00  0.401344E-01 -0.999959E+00 -0.959824098358800E+00
0.620000E+00  0.556670E+00 -0.194057E+00  0.376583E-01 -0.997482E+00 -0.959824139020363E+00
0.640000E+00  0.552938E+00 -0.177333E+00  0.314471E-01 -0.991271E+00 -0.959824025909232E+00
0.660000E+00  0.549650E+00 -0.149715E+00  0.224146E-01 -0.982238E+00 -0.959823740555385E+00
0.680000E+00  0.547018E+00 -0.111786E+00  0.124961E-01 -0.972319E+00 -0.959823336970974E+00
0.700000E+00  0.545234E+00 -0.654338E-01  0.428158E-02 -0.964105E+00 -0.959822949374949E+00
0.720000E+00  0.544436E+00 -0.138438E-01  0.191651E-03 -0.960014E+00 -0.959822740828059E+00
0.740000E+00  0.544688E+00  0.388845E-01  0.151200E-02 -0.961335E+00 -0.959822809222871E+00
0.760000E+00  0.545970E+00  0.884425E-01  0.782208E-02 -0.967645E+00 -0.959823121760196E+00
0.780000E+00  0.548180E+00  0.131095E+00  0.171859E-01 -0.977009E+00 -0.959823537510523E+00
0.800000E+00  0.551151E+00  0.164252E+00  0.269788E-01 -0.986803E+00 -0.959823896897282E+00
0.820000E+00  0.554678E+00  0.186670E+00  0.348456E-01 -0.994670E+00 -0.959824101581291E+00
0.840000E+00  0.558546E+00  0.198301E+00  0.393234E-01 -0.999148E+00 -0.959824135841031E+00
0.860000E+00  0.562544E+00  0.199955E+00  0.399822E-01 -0.999806E+00 -0.959824040089632E+00
0.880000E+00  0.566486E+00  0.192921E+00  0.372186E-01 -0.997042E+00 -0.959823872681201E+00
0.900000E+00  0.570213E+00  0.178662E+00  0.319201E-01 -0.991744E+00 -0.959823684025531E+00
0.920000E+00  0.573594E+00  0.158613E+00  0.251581E-01 -0.984982E+00 -0.959823507144883E+00
0.940000E+00  0.576527E+00  0.134075E+00  0.179762E-01 -0.977800E+00 -0.959823358784165E+00
0.960000E+00  0.578935E+00  0.106176E+00  0.112733E-01 -0.971097E+00 -0.959823244477645E+00
0.980000E+00  0.580758E+00  0.758728E-01  0.575668E-02 -0.965580E+00 -0.959823163683454E+00
0.100000E+01  0.581959E+00  0.439833E-01  0.193453E-02 -0.961758E+00 -0.959823113569485E+00
0.102000E+01  0.582512E+00  0.112220E-01  0.125932E-03 -0.959949E+00 -0.959823091354547E+00
0.104000E+01  0.582406E+00 -0.217565E-01  0.473344E-03 -0.960296E+00 -0.959823095550619E+00
0.106000E+01  0.581645E+00 -0.543121E-01  0.294981E-02 -0.962773E+00 -0.959823126450912E+00
0.108000E+01  0.580241E+00 -0.857758E-01  0.735749E-02 -0.967181E+00 -0.959823186040868E+00
0.110000E+01  0.578226E+00 -0.115405E+00  0.133183E-01 -0.973142E+00 -0.959823277297686E+00
0.112000E+01  0.575643E+00 -0.142341E+00  0.202609E-01 -0.980084E+00 -0.959823402639224E+00
0.114000E+01  0.572557E+00 -0.165574E+00  0.274147E-01 -0.987238E+00 -0.959823561149625E+00
0.116000E+01  0.569052E+00 -0.183920E+00  0.338265E-01 -0.993650E+00 -0.959823744310465E+00
0.118000E+01  0.565241E+00 -0.196028E+00  0.384271E-01 -0.998251E+00 -0.959823930638100E+00
0.120000E+01  0.561262E+00 -0.200439E+00  0.401758E-01 -0.100000E+01 -0.959824081314911E+00
0.122000E+01  0.557285E+00 -0.195717E+00  0.383053E-01 -0.998129E+00 -0.959824141650837E+00
0.124000E+01  0.553502E+00 -0.180690E+00  0.326490E-01 -0.992473E+00 -0.959824055385318E+00
0.126000E+01  0.550129E+00 -0.154781E+00  0.239570E-01 -0.983781E+00 -0.959823795779989E+00
0.128000E+01  0.547381E+00 -0.118386E+00  0.140153E-01 -0.973839E+00 -0.959823403698808E+00
0.130000E+01  0.545453E+00 -0.731806E-01  0.535539E-02 -0.965178E+00 -0.959823002477610E+00
0.132000E+01  0.544493E+00 -0.221601E-01  0.491069E-03 -0.960314E+00 -0.959822756425972E+00
0.134000E+01  0.544579E+00  0.306790E-01  0.941202E-03 -0.960764E+00 -0.959822779778470E+00
0.136000E+01  0.545703E+00  0.810076E-01  0.656224E-02 -0.966385E+00 -0.959823061313342E+00
0.138000E+01  0.547776E+00  0.124954E+00  0.156134E-01 -0.975437E+00 -0.959823472091499E+00
0.140000E+01  0.550640E+00  0.159724E+00  0.255117E-01 -0.985336E+00 -0.959823849035590E+00
0.142000E+01  0.554094E+00  0.183864E+00  0.338060E-01 -0.993630E+00 -0.959824081101380E+00
0.144000E+01  0.557922E+00  0.197159E+00  0.388716E-01 -0.998696E+00 -0.959824140497283E+00
0.146000E+01  0.561913E+00  0.200308E+00  0.401232E-01 -0.999947E+00 -0.959824061422540E+00
0.148000E+01  0.565875E+00  0.194547E+00  0.378486E-01 -0.997672E+00 -0.959823901570574E+00
0.150000E+01  0.569645E+00  0.181329E+00  0.328801E-01 -0.992704E+00 -0.959823713603463E+00
0.152000E+01  0.573089E+00  0.162102E+00  0.262769E-01 -0.986100E+00 -0.959823533391453E+00
0.154000E+01  0.576098E+00  0.138192E+00  0.190969E-01 -0.978920E+00 -0.959823379948082E+00
0.156000E+01  0.578593E+00  0.110754E+00  0.122665E-01 -0.972090E+00 -0.959823260208530E+00
0.158000E+01  0.580512E+00  0.807725E-01  0.652419E-02 -0.966347E+00 -0.959823174297335E+00
0.160000E+01  0.581812E+00  0.490835E-01  0.240919E-02 -0.962232E+00 -0.959823119554189E+00
0.162000E+01  0.582468E+00  0.164150E-01  0.269453E-03 -0.960093E+00 -0.959823093083961E+00
0.164000E+01  0.582467E+00 -0.165715E-01  0.274615E-03 -0.960098E+00 -0.959823093146278E+00
0.166000E+01  0.581808E+00 -0.492369E-01  0.242428E-02 -0.962247E+00 -0.959823119745502E+00
0.168000E+01  0.580504E+00 -0.809196E-01  0.654798E-02 -0.966371E+00 -0.959823174629408E+00
0.170000E+01  0.578582E+00 -0.110891E+00  0.122969E-01 -0.972120E+00 -0.959823260696059E+00
0.172000E+01  0.576085E+00 -0.138314E+00  0.191309E-01 -0.978954E+00 -0.959823380599635E+00
0.174000E+01  0.573073E+00 -0.162205E+00  0.263104E-01 -0.986134E+00 -0.959823534193975E+00
0.176000E+01  0.569628E+00 -0.181407E+00  0.329084E-01 -0.992732E+00 -0.959823714499586E+00
0.178000E+01  0.565857E+00 -0.194593E+00  0.378665E-01 -0.997690E+00 -0.959823902432492E+00
0.180000E+01  0.561894E+00 -0.200315E+00  0.401261E-01 -0.999950E+00 -0.959824062036195E+00
0.182000E+01  0.557904E+00 -0.197121E+00  0.388565E-01 -0.998681E+00 -0.959824140584710E+00
0.184000E+01  0.554077E+00 -0.183775E+00  0.337734E-01 -0.993597E+00 -0.959824080415356E+00
0.186000E+01  0.550625E+00 -0.159583E+00  0.254668E-01 -0.985291E+00 -0.959823847532005E+00
0.188000E+01  0.547764E+00 -0.124765E+00  0.155663E-01 -0.975390E+00 -0.959823470100502E+00
0.190000E+01  0.545696E+00 -0.807808E-01  0.652554E-02 -0.966349E+00 -0.959823059537811E+00
0.192000E+01  0.544576E+00 -0.304305E-01  0.926014E-03 -0.960749E+00 -0.959822778992416E+00
0.194000E+01  0.544495E+00  0.224103E-01  0.502220E-03 -0.960325E+00 -0.959822757005884E+00
0.196000E+01  0.545460E+00  0.734120E-01  0.538932E-02 -0.965212E+00 -0.959823004143899E+00
0.198000E+01  0.547392E+00  0.118582E+00  0.140617E-01 -0.973885E+00 -0.959823405709433E+00
0.200000E+01  0.550144E+00  0.154929E+00  0.240031E-01 -0.983827E+00 -0.959823797393254E+00

 ---------
  Summary 
 ---------
Dt           =  0.100000000000000E-02
V0           =  0.200000000000000E+00
RMSD(H)      =  0.428780751524513E-06
Max. err.(H) =  0.138210845179731E-05
Final pos.   =  0.550144198686560E+00
<H>= -0.959823495514525E+00 +-   0.428780751524513E-06
<T>=  0.194792679632586E-01 +-   0.141456976833057E-01
Norm. const.(NSum)=        2001
  Done.