# Table of Position of 64 bits at initial level: Initial Permutation Table
initial_perm = [58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6,
64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7]
# Expansion D-box Table
exp_d = [32, 1, 2, 3, 4, 5, 4, 5,
6, 7, 8, 9, 8, 9, 10, 11,
12, 13, 12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21, 20, 21,
22, 23, 24, 25, 24, 25, 26, 27,
28, 29, 28, 29, 30, 31, 32, 1]
# Straight Permutation Table
per = [16, 7, 20, 21,
29, 12, 28, 17,
1, 15, 23, 26,
5, 18, 31, 10,
2, 8, 24, 14,
32, 27, 3, 9,
19, 13, 30, 6,
22, 11, 4, 25]
# S-box Table
sbox = [[[14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7],
[0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8],
[4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0],
[15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13]],
[[15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10],
[3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5],
[0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15],
[13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9]],
[[10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8],
[13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1],
[13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7],
[1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12]],
[[7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15],
[13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9],
[10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4],
[3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14]],
[[2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9],
[14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6],
[4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14],
[11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3]],
[[12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11],
[10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8],
[9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6],
[4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13]],
[[4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1],
[13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6],
[1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2],
[6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12]],
[[13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7],
[1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2],
[7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8],
[2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11]]]
# Final Permutation Table
final_perm = [40, 8, 48, 16, 56, 24, 64, 32,
39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30,
37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28,
35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26,
33, 1, 41, 9, 49, 17, 57, 25]
# Hexadecimal to binary conversion
def hex2bin(s):
conversion = {'0': "0000",
'1': "0001",
'2': "0010",
'3': "0011",
'4': "0100",
'5': "0101",
'6': "0110",
'7': "0111",
'8': "1000",
'9': "1001",
'A': "1010",
'B': "1011",
'C': "1100",
'D': "1101",
'E': "1110",
'F': "1111"}
binary = ""
for i in range(len(s)):
binary = binary + conversion[s[i]]
return binary
# Binary to hexadecimal conversion
def bin2hex(s):
conversion = {"0000": '0',
"0001": '1',
"0010": '2',
"0011": '3',
"0100": '4',
"0101": '5',
"0110": '6',
"0111": '7',
"1000": '8',
"1001": '9',
"1010": 'A',
"1011": 'B',
"1100": 'C',
"1101": 'D',
"1110": 'E',
"1111": 'F'}
hexa = ""
for i in range(0, len(s), 4):
ch = ""
ch = ch + s[i]
ch = ch + s[i + 1]
ch = ch + s[i + 2]
ch = ch + s[i + 3]
hexa = hexa + conversion[ch]
return hexa
# Binary to decimal conversion
def bin2dec(binary):
binary1 = binary
decimal, i, n = 0, 0, 0
while(binary != 0):
dec = binary % 10
decimal = decimal + dec * pow(2, i)
binary = binary//10
i += 1
return decimal
# Decimal to binary conversion
def dec2bin(num):
res = bin(num).replace("0b", "")
if(len(res) % 4 != 0):
div = len(res) / 4
div = int(div)
counter = (4 * (div + 1)) - len(res)
for i in range(0, counter):
res = '0' + res
return res
# Permute function to rearrange the bits
def permute(k, arr, n):
permutation = ""
for i in range(0, n):
permutation = permutation + k[arr[i] - 1]
return permutation
# shifting the bits towards left by nth shifts
def shift_left(k, nth_shifts):
s = ""
for i in range(nth_shifts):
for j in range(1, len(k)):
s = s + k[j]
s = s + k[0]
k = s
s = ""
return k
# calculating xow of two strings of binary number a and b
def xor(a, b):
ans = ""
for i in range(len(a)):
if a[i] == b[i]:
ans = ans + "0"
else:
ans = ans + "1"
return ans
def encrypt(pt, rounded_key_binary, rk):
pt = hex2bin(pt)
# Initial Permutation
pt = permute(pt, initial_perm, 64)
print("After initial permutation", bin2hex(pt))
# Splitting
left = pt[0:32]
right = pt[32:64]
for i in range(0, 16):
# Expansion D-box: Expanding the 32 bits data into 48 bits
right_expanded = permute(right, exp_d, 48)
# XOR RoundKey[i] and right_expanded
xor_x = xor(right_expanded, rounded_key_binary[i])
# S-boxex: substituting the value from s-box table by calculating row and column
sbox_str = ""
for j in range(0, 8):
row = bin2dec(int(xor_x[j * 6] + xor_x[j * 6 + 5]))
col = bin2dec(
int(xor_x[j * 6 + 1] + xor_x[j * 6 + 2] + xor_x[j * 6 + 3] + xor_x[j * 6 + 4]))
val = sbox[j][row][col]
sbox_str = sbox_str + dec2bin(val)
# Straight D-box: After substituting rearranging the bits
sbox_str = permute(sbox_str, per, 32)
# XOR left and sbox_str
result = xor(left, sbox_str)
left = result
# Swapper
if(i != 15):
left, right = right, left
print("Round ", i + 1, " ", bin2hex(left),
" ", bin2hex(right), " ", rk[i])
# Combination
combine = left + right
# Final permutation: final rearranging of bits to get cipher text
cipher_text = permute(combine, final_perm, 64)
return cipher_text
pt = "123456ABCD132536"
key = "AABB09182736CCDD"
# Key generation
# --hex to binary
key = hex2bin(key)
print(key)
print(len(key))
# --parity bit drop table
keyp = [57, 49, 41, 33, 25, 17, 9,
1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27,
19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15,
7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29,
21, 13, 5, 28, 20, 12, 4]
# getting 56 bit key from 64 bit using the parity bits
key = permute(key, keyp, 56)
print("After permutations: ",key)
print(len(key))
# Number of bit shifts
shift_table = [1, 1, 2, 2,
2, 2, 2, 2,
1, 2, 2, 2,
2, 2, 2, 1]
# Key- Coconversionression Table : Coconversionression of key from 56 bits to 48 bits
key_coconversion = [14, 17, 11, 24, 1, 5,
3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8,
16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55,
30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53,
46, 42, 50, 36, 29, 32]
# Splitting
left = key[0:28] # rounded_key_binary for RoundKeys in binary
right = key[28:56] # rk for RoundKeys in hexadecimal
rounded_key_binary = []
rk = []
for i in range(0, 16):
# Shifting the bits by nth shifts by checking from shift table
left = shift_left(left, shift_table[i])
right = shift_left(right, shift_table[i])
# Combination of left and right string
combine_str = left + right
# conversionression of key from 56 to 48 bits
round_key = permute(combine_str, key_coconversion, 48)
rounded_key_binary.append(round_key)
rk.append(bin2hex(round_key))
print("Encryption")
cipher_text = bin2hex(encrypt(pt, rounded_key_binary, rk))
print("Cipher Text : ", cipher_text)
print("Decryption")
rounded_key_binary_rev = rounded_key_binary[::-1]
rk_rev = rk[::-1]
text = bin2hex(encrypt(cipher_text, rounded_key_binary_rev, rk_rev))
print("Plain Text : ", text)
IyBUYWJsZSBvZiBQb3NpdGlvbiBvZiA2NCBiaXRzIGF0IGluaXRpYWwgbGV2ZWw6IEluaXRpYWwgUGVybXV0YXRpb24gVGFibGUKaW5pdGlhbF9wZXJtID0gWzU4LCA1MCwgNDIsIDM0LCAyNiwgMTgsIDEwLCAyLAoJCQkJNjAsIDUyLCA0NCwgMzYsIDI4LCAyMCwgMTIsIDQsCgkJCQk2MiwgNTQsIDQ2LCAzOCwgMzAsIDIyLCAxNCwgNiwKCQkJCTY0LCA1NiwgNDgsIDQwLCAzMiwgMjQsIDE2LCA4LAoJCQkJNTcsIDQ5LCA0MSwgMzMsIDI1LCAxNywgOSwgMSwKCQkJCTU5LCA1MSwgNDMsIDM1LCAyNywgMTksIDExLCAzLAoJCQkJNjEsIDUzLCA0NSwgMzcsIDI5LCAyMSwgMTMsIDUsCgkJCQk2MywgNTUsIDQ3LCAzOSwgMzEsIDIzLCAxNSwgN10KCiMgRXhwYW5zaW9uIEQtYm94IFRhYmxlCmV4cF9kID0gWzMyLCAxLCAyLCAzLCA0LCA1LCA0LCA1LAoJCTYsIDcsIDgsIDksIDgsIDksIDEwLCAxMSwKCQkxMiwgMTMsIDEyLCAxMywgMTQsIDE1LCAxNiwgMTcsCgkJMTYsIDE3LCAxOCwgMTksIDIwLCAyMSwgMjAsIDIxLAoJCTIyLCAyMywgMjQsIDI1LCAyNCwgMjUsIDI2LCAyNywKCQkyOCwgMjksIDI4LCAyOSwgMzAsIDMxLCAzMiwgMV0KCiMgU3RyYWlnaHQgUGVybXV0YXRpb24gVGFibGUKcGVyID0gWzE2LCA3LCAyMCwgMjEsCgkyOSwgMTIsIDI4LCAxNywKCTEsIDE1LCAyMywgMjYsCgk1LCAxOCwgMzEsIDEwLAoJMiwgOCwgMjQsIDE0LAoJMzIsIDI3LCAzLCA5LAoJMTksIDEzLCAzMCwgNiwKCTIyLCAxMSwgNCwgMjVdCgojIFMtYm94IFRhYmxlCnNib3ggPSBbW1sxNCwgNCwgMTMsIDEsIDIsIDE1LCAxMSwgOCwgMywgMTAsIDYsIDEyLCA1LCA5LCAwLCA3XSwKCQlbMCwgMTUsIDcsIDQsIDE0LCAyLCAxMywgMSwgMTAsIDYsIDEyLCAxMSwgOSwgNSwgMywgOF0sCgkJWzQsIDEsIDE0LCA4LCAxMywgNiwgMiwgMTEsIDE1LCAxMiwgOSwgNywgMywgMTAsIDUsIDBdLAoJCVsxNSwgMTIsIDgsIDIsIDQsIDksIDEsIDcsIDUsIDExLCAzLCAxNCwgMTAsIDAsIDYsIDEzXV0sCgoJCVtbMTUsIDEsIDgsIDE0LCA2LCAxMSwgMywgNCwgOSwgNywgMiwgMTMsIDEyLCAwLCA1LCAxMF0sCgkJWzMsIDEzLCA0LCA3LCAxNSwgMiwgOCwgMTQsIDEyLCAwLCAxLCAxMCwgNiwgOSwgMTEsIDVdLAoJCVswLCAxNCwgNywgMTEsIDEwLCA0LCAxMywgMSwgNSwgOCwgMTIsIDYsIDksIDMsIDIsIDE1XSwKCQlbMTMsIDgsIDEwLCAxLCAzLCAxNSwgNCwgMiwgMTEsIDYsIDcsIDEyLCAwLCA1LCAxNCwgOV1dLAoKCQlbWzEwLCAwLCA5LCAxNCwgNiwgMywgMTUsIDUsIDEsIDEzLCAxMiwgNywgMTEsIDQsIDIsIDhdLAoJCVsxMywgNywgMCwgOSwgMywgNCwgNiwgMTAsIDIsIDgsIDUsIDE0LCAxMiwgMTEsIDE1LCAxXSwKCQlbMTMsIDYsIDQsIDksIDgsIDE1LCAzLCAwLCAxMSwgMSwgMiwgMTIsIDUsIDEwLCAxNCwgN10sCgkJWzEsIDEwLCAxMywgMCwgNiwgOSwgOCwgNywgNCwgMTUsIDE0LCAzLCAxMSwgNSwgMiwgMTJdXSwKCgkJW1s3LCAxMywgMTQsIDMsIDAsIDYsIDksIDEwLCAxLCAyLCA4LCA1LCAxMSwgMTIsIDQsIDE1XSwKCQlbMTMsIDgsIDExLCA1LCA2LCAxNSwgMCwgMywgNCwgNywgMiwgMTIsIDEsIDEwLCAxNCwgOV0sCgkJWzEwLCA2LCA5LCAwLCAxMiwgMTEsIDcsIDEzLCAxNSwgMSwgMywgMTQsIDUsIDIsIDgsIDRdLAoJCVszLCAxNSwgMCwgNiwgMTAsIDEsIDEzLCA4LCA5LCA0LCA1LCAxMSwgMTIsIDcsIDIsIDE0XV0sCgoJCVtbMiwgMTIsIDQsIDEsIDcsIDEwLCAxMSwgNiwgOCwgNSwgMywgMTUsIDEzLCAwLCAxNCwgOV0sCgkJWzE0LCAxMSwgMiwgMTIsIDQsIDcsIDEzLCAxLCA1LCAwLCAxNSwgMTAsIDMsIDksIDgsIDZdLAoJCVs0LCAyLCAxLCAxMSwgMTAsIDEzLCA3LCA4LCAxNSwgOSwgMTIsIDUsIDYsIDMsIDAsIDE0XSwKCQlbMTEsIDgsIDEyLCA3LCAxLCAxNCwgMiwgMTMsIDYsIDE1LCAwLCA5LCAxMCwgNCwgNSwgM11dLAoKCQlbWzEyLCAxLCAxMCwgMTUsIDksIDIsIDYsIDgsIDAsIDEzLCAzLCA0LCAxNCwgNywgNSwgMTFdLAoJCVsxMCwgMTUsIDQsIDIsIDcsIDEyLCA5LCA1LCA2LCAxLCAxMywgMTQsIDAsIDExLCAzLCA4XSwKCQlbOSwgMTQsIDE1LCA1LCAyLCA4LCAxMiwgMywgNywgMCwgNCwgMTAsIDEsIDEzLCAxMSwgNl0sCgkJWzQsIDMsIDIsIDEyLCA5LCA1LCAxNSwgMTAsIDExLCAxNCwgMSwgNywgNiwgMCwgOCwgMTNdXSwKCgkJW1s0LCAxMSwgMiwgMTQsIDE1LCAwLCA4LCAxMywgMywgMTIsIDksIDcsIDUsIDEwLCA2LCAxXSwKCQlbMTMsIDAsIDExLCA3LCA0LCA5LCAxLCAxMCwgMTQsIDMsIDUsIDEyLCAyLCAxNSwgOCwgNl0sCgkJWzEsIDQsIDExLCAxMywgMTIsIDMsIDcsIDE0LCAxMCwgMTUsIDYsIDgsIDAsIDUsIDksIDJdLAoJCVs2LCAxMSwgMTMsIDgsIDEsIDQsIDEwLCA3LCA5LCA1LCAwLCAxNSwgMTQsIDIsIDMsIDEyXV0sCgoJCVtbMTMsIDIsIDgsIDQsIDYsIDE1LCAxMSwgMSwgMTAsIDksIDMsIDE0LCA1LCAwLCAxMiwgN10sCgkJWzEsIDE1LCAxMywgOCwgMTAsIDMsIDcsIDQsIDEyLCA1LCA2LCAxMSwgMCwgMTQsIDksIDJdLAoJCVs3LCAxMSwgNCwgMSwgOSwgMTIsIDE0LCAyLCAwLCA2LCAxMCwgMTMsIDE1LCAzLCA1LCA4XSwKCQlbMiwgMSwgMTQsIDcsIDQsIDEwLCA4LCAxMywgMTUsIDEyLCA5LCAwLCAzLCA1LCA2LCAxMV1dXQoKIyBGaW5hbCBQZXJtdXRhdGlvbiBUYWJsZQpmaW5hbF9wZXJtID0gWzQwLCA4LCA0OCwgMTYsIDU2LCAyNCwgNjQsIDMyLAoJCQkzOSwgNywgNDcsIDE1LCA1NSwgMjMsIDYzLCAzMSwKCQkJMzgsIDYsIDQ2LCAxNCwgNTQsIDIyLCA2MiwgMzAsCgkJCTM3LCA1LCA0NSwgMTMsIDUzLCAyMSwgNjEsIDI5LAoJCQkzNiwgNCwgNDQsIDEyLCA1MiwgMjAsIDYwLCAyOCwKCQkJMzUsIDMsIDQzLCAxMSwgNTEsIDE5LCA1OSwgMjcsCgkJCTM0LCAyLCA0MiwgMTAsIDUwLCAxOCwgNTgsIDI2LAoJCQkzMywgMSwgNDEsIDksIDQ5LCAxNywgNTcsIDI1XQoKIyBIZXhhZGVjaW1hbCB0byBiaW5hcnkgY29udmVyc2lvbgpkZWYgaGV4MmJpbihzKToKCWNvbnZlcnNpb24gPSB7JzAnOiAiMDAwMCIsCgkJJzEnOiAiMDAwMSIsCgkJJzInOiAiMDAxMCIsCgkJJzMnOiAiMDAxMSIsCgkJJzQnOiAiMDEwMCIsCgkJJzUnOiAiMDEwMSIsCgkJJzYnOiAiMDExMCIsCgkJJzcnOiAiMDExMSIsCgkJJzgnOiAiMTAwMCIsCgkJJzknOiAiMTAwMSIsCgkJJ0EnOiAiMTAxMCIsCgkJJ0InOiAiMTAxMSIsCgkJJ0MnOiAiMTEwMCIsCgkJJ0QnOiAiMTEwMSIsCgkJJ0UnOiAiMTExMCIsCgkJJ0YnOiAiMTExMSJ9CgliaW5hcnkgPSAiIgoJZm9yIGkgaW4gcmFuZ2UobGVuKHMpKToKCQliaW5hcnkgPSBiaW5hcnkgKyBjb252ZXJzaW9uW3NbaV1dCglyZXR1cm4gYmluYXJ5CgojIEJpbmFyeSB0byBoZXhhZGVjaW1hbCBjb252ZXJzaW9uCmRlZiBiaW4yaGV4KHMpOgoJY29udmVyc2lvbiA9IHsiMDAwMCI6ICcwJywKCQkiMDAwMSI6ICcxJywKCQkiMDAxMCI6ICcyJywKCQkiMDAxMSI6ICczJywKCQkiMDEwMCI6ICc0JywKCQkiMDEwMSI6ICc1JywKCQkiMDExMCI6ICc2JywKCQkiMDExMSI6ICc3JywKCQkiMTAwMCI6ICc4JywKCQkiMTAwMSI6ICc5JywKCQkiMTAxMCI6ICdBJywKCQkiMTAxMSI6ICdCJywKCQkiMTEwMCI6ICdDJywKCQkiMTEwMSI6ICdEJywKCQkiMTExMCI6ICdFJywKCQkiMTExMSI6ICdGJ30KCWhleGEgPSAiIgoJZm9yIGkgaW4gcmFuZ2UoMCwgbGVuKHMpLCA0KToKCQljaCA9ICIiCgkJY2ggPSBjaCArIHNbaV0KCQljaCA9IGNoICsgc1tpICsgMV0KCQljaCA9IGNoICsgc1tpICsgMl0KCQljaCA9IGNoICsgc1tpICsgM10KCQloZXhhID0gaGV4YSArIGNvbnZlcnNpb25bY2hdCgoJcmV0dXJuIGhleGEKCgoKIyBCaW5hcnkgdG8gZGVjaW1hbCBjb252ZXJzaW9uCmRlZiBiaW4yZGVjKGJpbmFyeSk6CgoJYmluYXJ5MSA9IGJpbmFyeQoJZGVjaW1hbCwgaSwgbiA9IDAsIDAsIDAKCXdoaWxlKGJpbmFyeSAhPSAwKToKCQlkZWMgPSBiaW5hcnkgJSAxMAoJCWRlY2ltYWwgPSBkZWNpbWFsICsgZGVjICogcG93KDIsIGkpCgkJYmluYXJ5ID0gYmluYXJ5Ly8xMAoJCWkgKz0gMQoJcmV0dXJuIGRlY2ltYWwKCiMgRGVjaW1hbCB0byBiaW5hcnkgY29udmVyc2lvbgoKCmRlZiBkZWMyYmluKG51bSk6CglyZXMgPSBiaW4obnVtKS5yZXBsYWNlKCIwYiIsICIiKQoJaWYobGVuKHJlcykgJSA0ICE9IDApOgoJCWRpdiA9IGxlbihyZXMpIC8gNAoJCWRpdiA9IGludChkaXYpCgkJY291bnRlciA9ICg0ICogKGRpdiArIDEpKSAtIGxlbihyZXMpCgkJZm9yIGkgaW4gcmFuZ2UoMCwgY291bnRlcik6CgkJCXJlcyA9ICcwJyArIHJlcwoJcmV0dXJuIHJlcwoKIyBQZXJtdXRlIGZ1bmN0aW9uIHRvIHJlYXJyYW5nZSB0aGUgYml0cwoKCmRlZiBwZXJtdXRlKGssIGFyciwgbik6CglwZXJtdXRhdGlvbiA9ICIiCglmb3IgaSBpbiByYW5nZSgwLCBuKToKCQlwZXJtdXRhdGlvbiA9IHBlcm11dGF0aW9uICsga1thcnJbaV0gLSAxXQoJcmV0dXJuIHBlcm11dGF0aW9uCgojIHNoaWZ0aW5nIHRoZSBiaXRzIHRvd2FyZHMgbGVmdCBieSBudGggc2hpZnRzCgoKZGVmIHNoaWZ0X2xlZnQoaywgbnRoX3NoaWZ0cyk6CglzID0gIiIKCWZvciBpIGluIHJhbmdlKG50aF9zaGlmdHMpOgoJCWZvciBqIGluIHJhbmdlKDEsIGxlbihrKSk6CgkJCXMgPSBzICsga1tqXQoJCXMgPSBzICsga1swXQoJCWsgPSBzCgkJcyA9ICIiCglyZXR1cm4gawoKCgojIGNhbGN1bGF0aW5nIHhvdyBvZiB0d28gc3RyaW5ncyBvZiBiaW5hcnkgbnVtYmVyIGEgYW5kIGIKZGVmIHhvcihhLCBiKToKCWFucyA9ICIiCglmb3IgaSBpbiByYW5nZShsZW4oYSkpOgoJCWlmIGFbaV0gPT0gYltpXToKCQkJYW5zID0gYW5zICsgIjAiCgkJZWxzZToKCQkJYW5zID0gYW5zICsgIjEiCglyZXR1cm4gYW5zCgoKCgoKZGVmIGVuY3J5cHQocHQsIHJvdW5kZWRfa2V5X2JpbmFyeSwgcmspOgoJcHQgPSBoZXgyYmluKHB0KQoKCSMgSW5pdGlhbCBQZXJtdXRhdGlvbgoJcHQgPSBwZXJtdXRlKHB0LCBpbml0aWFsX3Blcm0sIDY0KQoJcHJpbnQoIkFmdGVyIGluaXRpYWwgcGVybXV0YXRpb24iLCBiaW4yaGV4KHB0KSkKCgkjIFNwbGl0dGluZwoJbGVmdCA9IHB0WzA6MzJdCglyaWdodCA9IHB0WzMyOjY0XQoJZm9yIGkgaW4gcmFuZ2UoMCwgMTYpOgoJCSMgRXhwYW5zaW9uIEQtYm94OiBFeHBhbmRpbmcgdGhlIDMyIGJpdHMgZGF0YSBpbnRvIDQ4IGJpdHMKCQlyaWdodF9leHBhbmRlZCA9IHBlcm11dGUocmlnaHQsIGV4cF9kLCA0OCkKCgkJIyBYT1IgUm91bmRLZXlbaV0gYW5kIHJpZ2h0X2V4cGFuZGVkCgkJeG9yX3ggPSB4b3IocmlnaHRfZXhwYW5kZWQsIHJvdW5kZWRfa2V5X2JpbmFyeVtpXSkKCgkJIyBTLWJveGV4OiBzdWJzdGl0dXRpbmcgdGhlIHZhbHVlIGZyb20gcy1ib3ggdGFibGUgYnkgY2FsY3VsYXRpbmcgcm93IGFuZCBjb2x1bW4KCQlzYm94X3N0ciA9ICIiCgkJZm9yIGogaW4gcmFuZ2UoMCwgOCk6CgkJCXJvdyA9IGJpbjJkZWMoaW50KHhvcl94W2ogKiA2XSArIHhvcl94W2ogKiA2ICsgNV0pKQoJCQljb2wgPSBiaW4yZGVjKAoJCQkJaW50KHhvcl94W2ogKiA2ICsgMV0gKyB4b3JfeFtqICogNiArIDJdICsgeG9yX3hbaiAqIDYgKyAzXSArIHhvcl94W2ogKiA2ICsgNF0pKQoJCQl2YWwgPSBzYm94W2pdW3Jvd11bY29sXQoJCQlzYm94X3N0ciA9IHNib3hfc3RyICsgZGVjMmJpbih2YWwpCgoJCSMgU3RyYWlnaHQgRC1ib3g6IEFmdGVyIHN1YnN0aXR1dGluZyByZWFycmFuZ2luZyB0aGUgYml0cwoJCXNib3hfc3RyID0gcGVybXV0ZShzYm94X3N0ciwgcGVyLCAzMikKCgkJIyBYT1IgbGVmdCBhbmQgc2JveF9zdHIKCQlyZXN1bHQgPSB4b3IobGVmdCwgc2JveF9zdHIpCgkJbGVmdCA9IHJlc3VsdAoKCQkjIFN3YXBwZXIKCQlpZihpICE9IDE1KToKCQkJbGVmdCwgcmlnaHQgPSByaWdodCwgbGVmdAoJCXByaW50KCJSb3VuZCAiLCBpICsgMSwgIiAiLCBiaW4yaGV4KGxlZnQpLAoJCQkiICIsIGJpbjJoZXgocmlnaHQpLCAiICIsIHJrW2ldKQoKCSMgQ29tYmluYXRpb24KCWNvbWJpbmUgPSBsZWZ0ICsgcmlnaHQKCgkjIEZpbmFsIHBlcm11dGF0aW9uOiBmaW5hbCByZWFycmFuZ2luZyBvZiBiaXRzIHRvIGdldCBjaXBoZXIgdGV4dAoJY2lwaGVyX3RleHQgPSBwZXJtdXRlKGNvbWJpbmUsIGZpbmFsX3Blcm0sIDY0KQoJcmV0dXJuIGNpcGhlcl90ZXh0CgoKcHQgPSAiMTIzNDU2QUJDRDEzMjUzNiIKa2V5ID0gIkFBQkIwOTE4MjczNkNDREQiCgojIEtleSBnZW5lcmF0aW9uCiMgLS1oZXggdG8gYmluYXJ5CmtleSA9IGhleDJiaW4oa2V5KQpwcmludChrZXkpCnByaW50KGxlbihrZXkpKQojIC0tcGFyaXR5IGJpdCBkcm9wIHRhYmxlCmtleXAgPSBbNTcsIDQ5LCA0MSwgMzMsIDI1LCAxNywgOSwKCQkxLCA1OCwgNTAsIDQyLCAzNCwgMjYsIDE4LAoJCTEwLCAyLCA1OSwgNTEsIDQzLCAzNSwgMjcsCgkJMTksIDExLCAzLCA2MCwgNTIsIDQ0LCAzNiwKCQk2MywgNTUsIDQ3LCAzOSwgMzEsIDIzLCAxNSwKCQk3LCA2MiwgNTQsIDQ2LCAzOCwgMzAsIDIyLAoJCTE0LCA2LCA2MSwgNTMsIDQ1LCAzNywgMjksCgkJMjEsIDEzLCA1LCAyOCwgMjAsIDEyLCA0XQoKIyBnZXR0aW5nIDU2IGJpdCBrZXkgZnJvbSA2NCBiaXQgdXNpbmcgdGhlIHBhcml0eSBiaXRzCmtleSA9IHBlcm11dGUoa2V5LCBrZXlwLCA1NikKcHJpbnQoIkFmdGVyIHBlcm11dGF0aW9uczogIixrZXkpCnByaW50KGxlbihrZXkpKQojIE51bWJlciBvZiBiaXQgc2hpZnRzCnNoaWZ0X3RhYmxlID0gWzEsIDEsIDIsIDIsCgkJCTIsIDIsIDIsIDIsCgkJCTEsIDIsIDIsIDIsCgkJCTIsIDIsIDIsIDFdCgojIEtleS0gQ29jb252ZXJzaW9ucmVzc2lvbiBUYWJsZSA6IENvY29udmVyc2lvbnJlc3Npb24gb2Yga2V5IGZyb20gNTYgYml0cyB0byA0OCBiaXRzCmtleV9jb2NvbnZlcnNpb24gPSBbMTQsIDE3LCAxMSwgMjQsIDEsIDUsCgkJCTMsIDI4LCAxNSwgNiwgMjEsIDEwLAoJCQkyMywgMTksIDEyLCA0LCAyNiwgOCwKCQkJMTYsIDcsIDI3LCAyMCwgMTMsIDIsCgkJCTQxLCA1MiwgMzEsIDM3LCA0NywgNTUsCgkJCTMwLCA0MCwgNTEsIDQ1LCAzMywgNDgsCgkJCTQ0LCA0OSwgMzksIDU2LCAzNCwgNTMsCgkJCTQ2LCA0MiwgNTAsIDM2LCAyOSwgMzJdCgojIFNwbGl0dGluZwpsZWZ0ID0ga2V5WzA6MjhdICMgcm91bmRlZF9rZXlfYmluYXJ5IGZvciBSb3VuZEtleXMgaW4gYmluYXJ5CnJpZ2h0ID0ga2V5WzI4OjU2XSAjIHJrIGZvciBSb3VuZEtleXMgaW4gaGV4YWRlY2ltYWwKCnJvdW5kZWRfa2V5X2JpbmFyeSA9IFtdCnJrID0gW10KZm9yIGkgaW4gcmFuZ2UoMCwgMTYpOgoJIyBTaGlmdGluZyB0aGUgYml0cyBieSBudGggc2hpZnRzIGJ5IGNoZWNraW5nIGZyb20gc2hpZnQgdGFibGUKCWxlZnQgPSBzaGlmdF9sZWZ0KGxlZnQsIHNoaWZ0X3RhYmxlW2ldKQoJcmlnaHQgPSBzaGlmdF9sZWZ0KHJpZ2h0LCBzaGlmdF90YWJsZVtpXSkKCgkjIENvbWJpbmF0aW9uIG9mIGxlZnQgYW5kIHJpZ2h0IHN0cmluZwoJY29tYmluZV9zdHIgPSBsZWZ0ICsgcmlnaHQKCgkjIGNvbnZlcnNpb25yZXNzaW9uIG9mIGtleSBmcm9tIDU2IHRvIDQ4IGJpdHMKCXJvdW5kX2tleSA9IHBlcm11dGUoY29tYmluZV9zdHIsIGtleV9jb2NvbnZlcnNpb24sIDQ4KQoKCXJvdW5kZWRfa2V5X2JpbmFyeS5hcHBlbmQocm91bmRfa2V5KQoJcmsuYXBwZW5kKGJpbjJoZXgocm91bmRfa2V5KSkKCnByaW50KCJFbmNyeXB0aW9uIikKY2lwaGVyX3RleHQgPSBiaW4yaGV4KGVuY3J5cHQocHQsIHJvdW5kZWRfa2V5X2JpbmFyeSwgcmspKQpwcmludCgiQ2lwaGVyIFRleHQgOiAiLCBjaXBoZXJfdGV4dCkKCnByaW50KCJEZWNyeXB0aW9uIikKcm91bmRlZF9rZXlfYmluYXJ5X3JldiA9IHJvdW5kZWRfa2V5X2JpbmFyeVs6Oi0xXQpya19yZXYgPSBya1s6Oi0xXQp0ZXh0ID0gYmluMmhleChlbmNyeXB0KGNpcGhlcl90ZXh0LCByb3VuZGVkX2tleV9iaW5hcnlfcmV2LCBya19yZXYpKQpwcmludCgiUGxhaW4gVGV4dCA6ICIsIHRleHQpCgoK