#include <bits/stdc++.h>
using namespace std;
typedef pair<long long, long long> pll;
#define fi first
#define sec second
const int LN = 30;
int n, k, p, u, v;
vector<int> a;
long long inv_cnt[LN][2];
vector<pll> high_bit, low_bit;
void rec(vector<int> &a, int bit) {
if (!a.size() || bit < 0) return;
int zero = 0, one = 0;
vector<int> unset_bit, set_bit;
for(int x : a) {
if (x & (1 << bit)) {
one += 1;
// if the bit is set in X, then inversion will be present as before
// (0 < 1), but later it will be (0 ^ 1) > (1 ^ 1).
inv_cnt[bit][1] += zero;
set_bit.push_back(x);
}
else {
zero += 1;
// if the bit is unset in X, then inversion will be present as before
// (1 > 0), but later it will be (1 ^ 1) < (0 ^ 1).
inv_cnt[bit][0] += one;
unset_bit.push_back(x);
}
}
rec(set_bit, bit - 1);
rec(unset_bit, bit - 1);
}
long long get(pll valid_pair) {
// 2 - pointers approach.
// Given two arrays: U and V and we need to find how many valid pairs
// (inversion_count, number) are less than given valid pair.
long long res = 0;
int p2 = low_bit.size() - 1;
for(int p1 = 0; p1 < high_bit.size(); ++p1) {
while(p2 >= 0) {
// pair: {number of inversions, number X considered}
pll y = {high_bit[p1].fi + low_bit[p2].fi,
(high_bit[p1].sec << u) + low_bit[p2].sec};
if (y <= valid_pair) {
break;
}
p2 -= 1;
}
res += p2 + 1;// 0-based indexing of array. Added 1 to get the actual count.
}
return res;
}
int main() {
ios_base::sync_with_stdio(false);
int t;
cin >> t;
while(t--) {
// Input.
cin >> n >> k >> p;
a.resize(n);
for(int i = 0; i < n; ++i) {
cin >> a[i];
}
// Clear.
for(int i = 0; i < k; ++i) {
inv_cnt[i][0] = 0;
inv_cnt[i][1] = 0;
}
// Pre-computation.
rec(a, k - 1);
// Meet-in-the-middle pre-computation.
low_bit.clear();
high_bit.clear();
u = k / 2, v = k - u;
for(int i = 0; i < (1 << u); ++i) {
long long inv = 0;
for(int j = 0; j < u; ++j) {
inv += inv_cnt[j][(i >> j) & 1];
}
low_bit.push_back({inv, i});
}
for(int i = 0; i < (1 << v); ++i) {
long long inv = 0;
for(int j = 0; j < v; ++j) {
inv += inv_cnt[j + u][(i >> j) & 1];
}
high_bit.push_back({inv, i});
}
sort(low_bit.begin(), low_bit.end());
sort(high_bit.begin(), high_bit.end());
// Binary search 1: Find number of inversion in the P^th number.
long long l1 = 0, h1 = (long long)n * (n - 1) / 2;
while(l1 <= h1) {
long long m = (l1 + h1) / 2;
// Find count of numbers such that number of inversions is less than "m".
// The second number is a large number which doesn't matter to us.
// It is written just to avoid writing 2 check functions for binary
// search. Will become clear after seeing the second binary search.
long long res = get({m, INT_MAX});
if (res >= p) {
h1 = m - 1;
}
else {
l1 = m + 1;
}
}
long long l2 = 0, h2 = (1 << k) - 1;
while(l2 <= h2) {
long long m = (l2 + h2) / 2;
// Find count of numbers such that number of inversions are less than or
// equal to "l1" and the numbers considered are less than "m". This means
// if two numbers have same inversion count, thet are sorted by magnitude
// of the number.
long long res = get({l1, m});
if (res >= p) {
h2 = m - 1;
}
else {
l2 = m + 1;
}
}
cout << l2 << "\n";
}
return 0;
}