# your code goes here
def log2(n):
i = -1
while(n):
i += 1
n >>= 1
return i
# https://c...content-available-to-author-only...s.com/string/suffix-array.html
def sort_cyclic_shifts(s):
n = len(s)
alphabet = 256
cs = []
p = [0] * n
c = [0] * n
cnt = [0] * max(alphabet, n + 1)
for i in range(n):
cnt[ord(s[i])] += 1
for i in range(1, alphabet):
cnt[i] += cnt[i-1]
for i in range(n):
cnt[ord(s[i])] -= 1
p[cnt[ord(s[i])]] = i
c[p[0]] = 0
classes = 1
for i in range(1, n):
if s[p[i]] != s[p[i-1]]:
classes += 1
c[p[i]] = classes - 1
cs.append(c[:])
pn = [0] * n
cn = [0] * n
h = 0
while (1 << h) < n:
for i in range(n):
pn[i] = p[i] - (1 << h)
if pn[i] < 0:
pn[i] += n
for i in range(0, classes):
cnt[i] = 0
for i in range(n):
cnt[c[pn[i]]] += 1
for i in range(1, classes):
cnt[i] += cnt[i-1]
for i in range(n-1, -1, -1):
cnt[c[pn[i]]] -= 1
p[cnt[c[pn[i]]]] = pn[i]
cn[p[0]] = 0
classes = 1
for i in range(i, n):
cur = c[p[i]], c[(p[i] + (1 << h)) % n]
prev = c[p[i-1]], c[(p[i-1] + (1 << h)) % n]
if cur != prev:
classes += 1
cn[p[i]] = classes - 1
c = cn
cs.append(c[:])
h += 1
return p, cs
# https://c...content-available-to-author-only...s.com/string/suffix-array.html
def suffix_array_construction(s):
s += "$"
sorted_shifts, cs = sort_cyclic_shifts(s)
return sorted_shifts[1:], cs
# https://c...content-available-to-author-only...s.com/string/suffix-array.html
def compare(i, j, l, k, n, c):
a = c[k][i], c[k][(i+l-(1 << k))%n]
b = c[k][j], c[k][(j+l-(1 << k))%n]
if a == b:
return 0
elif a < b:
return -1
return 1
## MAIN FUNCTION
def f(s, k):
debug = 0
n = len(s)
# Best prefix
best_first = s[k]
best_second = s[k+1]
first_idxs = [k]
second_idxs = [k + 1]
for i in range(k - 1, -1, -1):
if s[i] <= best_first:
best_first = s[i]
# We only need one leftmost index
first_idxs = [i]
for i in range(k, first_idxs[0], -1):
if (s[i] < best_second):
best_second = s[i]
second_idxs = [i]
elif s[i] == best_second:
second_idxs.append(i)
second_idxs = list(reversed(second_idxs))
# Best suffix
# For each of l deletions,
# we can place the last
# character anywhere ahead
# of the penultimate.
last_idxs = {(n - 2): [n - 1]}
best_last = s[n - 1]
for l in range(2, k + 2):
idx = n - l
if s[idx] < best_last:
best_last = s[idx]
last_idxs[n - 1 - l] = [idx]
else:
last_idxs[n - 1 - l] = last_idxs[n - l]
p, cs = suffix_array_construction(s)
second_idx = 0
if debug:
print(first_idxs, second_idxs, last_idxs)
while first_idxs[0] >= second_idxs[second_idx]:
second_idx += 1
prefix_end = second_idxs[second_idx]
num_deleted = prefix_end - 1
remaining = k - num_deleted
suffix_start = n - remaining - 2
best = (prefix_end + 1, suffix_start - 1)
while second_idx < len(second_idxs):
prefix_end = second_idxs[second_idx]
num_deleted = prefix_end - 1
remaining = k - num_deleted
suffix_start = n - remaining - 2
len_candidate_middle = suffix_start - 1 - prefix_end
# The prefixes are all equal.
# We need to compare the middle
# and suffix.
# compare(i, j, l, k, n, c)
len_best_middle = best[1] - best[0] + 1
l = min(len_candidate_middle, len_best_middle)
# Compare middles
comp = compare(best[0], prefix_end + 1, l, log2(l), n + 1, cs)
# Candidate is better
if comp == 1:
best = (prefix_end + 1, suffix_start - 1)
elif comp == 0:
# Compare suffix of candidate with
# substring at the comparable position
# of best.
[last_idx] = last_idxs[suffix_start]
candidate_suffix = s[suffix_start] + s[last_idx]
if len_candidate_middle < len_best_middle:
# One character of best's suffix
if len_candidate_middle + 1 == len_best_middle:
to_compare = s[best[1]] + s[best[1] + 1]
# None of best's suffix
else:
idx = best[0] + len_candidate_middle
to_compare = s[idx] + s[idx + 1]
# If the candidate suffix is equal
# to best's equivalent, the candidate
# wins since it's shorter.
if candidate_suffix <= to_compare:
best = (prefix_end + 1, suffix_start - 1)
elif len_candidate_middle == len_best_middle:
idx = best[1] + 1
to_compare = s[idx] + s[last_idxs[idx][0]]
if candidate_suffix < to_compare:
best = (prefix_end + 1, suffix_start - 1)
# len_best_middle < len_candidate_middle
else:
# One character of candidate's suffix
if len_best_middle + 1 == len_candidate_middle:
to_compare = s[suffix_start - 1] + s[suffix_start]
# None of candidates's suffix
else:
idx = prefix_end + 1 + len_best_middle
to_compare = s[idx] + s[idx + 1]
if candidate_suffix < to_compare:
best = (prefix_end + 1, suffix_start - 1)
second_idx += 1
prefix = s[first_idxs[0]] + s[second_idxs[second_idx-1]]
middle = s[best[0]:best[1] + 1]
suffix = s[best[1] + 1] + s[last_idxs[best[1] + 1][0]]
return prefix + middle + suffix
def brute_force(s, k):
best = s + "z"
stack = [(s, k)]
while stack:
_s, _k = stack.pop()
if _k == 0:
best = min(best, _s)
continue
stack.append((_s[1:], _k - 1))
stack.append((_s[0] + _s[2:], _k - 1))
stack.append((_s[0:len(_s)-1], _k - 1))
stack.append((_s[0:len(_s)-2] + _s[-1], _k - 1))
return best
# 01234567
#s = "abacaaba"
#k = 2
def lex_kr(x,K,k_r):
"""
Get a lexicographically comparable subset of `x` for a given value of
`k_r`.
"""
N = len(x)
assert k_r > 0 and k_r < K # check for corner cases
k_l = K - k_r
v_l = min(x[:k_l+1])
v_r = min(x[-k_r-1:])
lex = [v_l]
lex += x[k_l+1:N-k_r-1]
lex += [v_r]
return lex
def lex_corner(x,K):
"""
Get the two lexicographically comparable subsets of `x` for corner cases
when `k_r=0` and `k_r=K`.
"""
N = len(x)
k_l = K
v_l = min(x[:k_l+1])
lex0 = [v_l]
lex0 += x[k_l+1:]
k_r = K
v_r = min(x[-k_r-1:])
lex1 = x[:N-k_r-1]
lex1 += [v_r]
return lex0,lex1
def min_lex(x,K):
subsets = [ lex_kr(x,K,k_r) for k_r in range(1,K) ]
subsets += lex_corner(x,K) # append the two corner cases
return min(subsets)
# Test
import random
n = 10
num_tests = 100
for _ in range(num_tests):
s = "".join([chr(97 + random.randint(0, 25)) for i in range(n)])
k = random.randint(1, n - 5)
#print(s, k)
_f = [x for x in f(s, k)]
#rute = brute_force(s, k)
brute = min_lex([x for x in s], k)
if brute != _f:
print("MISMATCH!")
print(s, k)
print(_f)
print(brute)
break
print("Done.")