#include<bits/stdc++.h>
using namespace std;
#define endl '\n'
#define int long long int
const int MOD = 1000000007;
const int MOD2 = 998244353;
const int INF = LLONG_MAX / 2;
const int MAXN = 100000;
int primes[1000000];
/*void seive() {
fill(primes, primes + 1000000, 1);
primes[0] = primes[1] = 0;
for (int i = 2; i * i < 1000000; i++) {
if (primes[i]) {
for (int j = i * i; j < 1000000; j += i) {
primes[j] = 0;
}
}
}
}
bool isPrime(int n) {
if (n <= 1) return false;
for (int i = 2; i * i <= n; i++) {
if (n % i == 0) return false;
}
return true;
}
int gcd(int a, int b) {
if (a == 0) return b;
return gcd(b % a, a);
}*/
int power(int a, int b, int mod) {
int res = 1;
a %= mod;
while (b > 0) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
// nCr % MOD for n < MOD
int nCrModP(int n, int r) {
if (r > n) return 0;
if (r == 0 || r == n) return 1;
int numerator = 1, denominator = 1;
for (int i = 0; i < r; i++) {
numerator = (numerator * (n - i)) % MOD;
denominator = (denominator * (i + 1)) % MOD;
}
return (numerator * power(denominator, MOD - 2, MOD)) % MOD;
}
// Lucas's Theorem
int lucas(int n, int r) {
if (r == 0) return 1;
return (lucas(n / MOD, r / MOD) * nCrModP(n % MOD, r % MOD)) % MOD;
}
void solve() {
int n,k;
cin>>n>>k;
int A[n];
int cnt = 0;
for(int i = 0 ; i<n ; i++){
cin>>A[i];
}
for(int i = 0 ; i<n ; i++){
if(A[i]==1){
cnt++;
}
}
int maxi = INT_MAX,cnt1=0;
for(int i = 0 ; i<k ; i++){
if(A[i]==1){
cnt1++;
}
}
maxi = min(maxi,cnt1);
int i = 0,j=k;
while(j<n){
if(A[i]==1){
cnt1--;
}
if(A[j]==1){
cnt1++;
}
maxi = min(maxi,cnt1);
i++;
j++;
}
int d = cnt-maxi;
int e = (maxi*(maxi+1))/2;
cout<<d+e<<endl;
}
signed main() {
ios::sync_with_stdio(false); cin.tie(NULL);
int t;
cin >> t;
while (t--) {
solve();
}
return 0;
}
I2luY2x1ZGU8Yml0cy9zdGRjKysuaD4KdXNpbmcgbmFtZXNwYWNlIHN0ZDsKI2RlZmluZSBlbmRsICdcbicKI2RlZmluZSBpbnQgbG9uZyBsb25nIGludApjb25zdCBpbnQgTU9EID0gMTAwMDAwMDAwNzsKY29uc3QgaW50IE1PRDIgPSA5OTgyNDQzNTM7CmNvbnN0IGludCBJTkYgPSBMTE9OR19NQVggLyAyOwpjb25zdCBpbnQgTUFYTiA9IDEwMDAwMDsKaW50IHByaW1lc1sxMDAwMDAwXTsKCi8qdm9pZCBzZWl2ZSgpIHsKICAgIGZpbGwocHJpbWVzLCBwcmltZXMgKyAxMDAwMDAwLCAxKTsKICAgIHByaW1lc1swXSA9IHByaW1lc1sxXSA9IDA7CiAgICBmb3IgKGludCBpID0gMjsgaSAqIGkgPCAxMDAwMDAwOyBpKyspIHsKICAgICAgICBpZiAocHJpbWVzW2ldKSB7CiAgICAgICAgICAgIGZvciAoaW50IGogPSBpICogaTsgaiA8IDEwMDAwMDA7IGogKz0gaSkgewogICAgICAgICAgICAgICAgcHJpbWVzW2pdID0gMDsKICAgICAgICAgICAgfQogICAgICAgIH0KICAgIH0KfQoKYm9vbCBpc1ByaW1lKGludCBuKSB7CiAgICBpZiAobiA8PSAxKSByZXR1cm4gZmFsc2U7CiAgICBmb3IgKGludCBpID0gMjsgaSAqIGkgPD0gbjsgaSsrKSB7CiAgICAgICAgaWYgKG4gJSBpID09IDApIHJldHVybiBmYWxzZTsKICAgIH0KICAgIHJldHVybiB0cnVlOwp9CgppbnQgZ2NkKGludCBhLCBpbnQgYikgewogICAgaWYgKGEgPT0gMCkgcmV0dXJuIGI7CiAgICByZXR1cm4gZ2NkKGIgJSBhLCBhKTsKfSovCgppbnQgcG93ZXIoaW50IGEsIGludCBiLCBpbnQgbW9kKSB7CiAgICBpbnQgcmVzID0gMTsKICAgIGEgJT0gbW9kOwogICAgd2hpbGUgKGIgPiAwKSB7CiAgICAgICAgaWYgKGIgJiAxKSByZXMgPSByZXMgKiBhICUgbW9kOwogICAgICAgIGEgPSBhICogYSAlIG1vZDsKICAgICAgICBiID4+PSAxOwogICAgfQogICAgcmV0dXJuIHJlczsKfQoKLy8gbkNyICUgTU9EIGZvciBuIDwgTU9ECmludCBuQ3JNb2RQKGludCBuLCBpbnQgcikgewogICAgaWYgKHIgPiBuKSByZXR1cm4gMDsKICAgIGlmIChyID09IDAgfHwgciA9PSBuKSByZXR1cm4gMTsKCiAgICBpbnQgbnVtZXJhdG9yID0gMSwgZGVub21pbmF0b3IgPSAxOwogICAgZm9yIChpbnQgaSA9IDA7IGkgPCByOyBpKyspIHsKICAgICAgICBudW1lcmF0b3IgPSAobnVtZXJhdG9yICogKG4gLSBpKSkgJSBNT0Q7CiAgICAgICAgZGVub21pbmF0b3IgPSAoZGVub21pbmF0b3IgKiAoaSArIDEpKSAlIE1PRDsKICAgIH0KICAgIHJldHVybiAobnVtZXJhdG9yICogcG93ZXIoZGVub21pbmF0b3IsIE1PRCAtIDIsIE1PRCkpICUgTU9EOwp9CgovLyBMdWNhcydzIFRoZW9yZW0KaW50IGx1Y2FzKGludCBuLCBpbnQgcikgewogICAgaWYgKHIgPT0gMCkgcmV0dXJuIDE7CiAgICByZXR1cm4gKGx1Y2FzKG4gLyBNT0QsIHIgLyBNT0QpICogbkNyTW9kUChuICUgTU9ELCByICUgTU9EKSkgJSBNT0Q7Cn0Kdm9pZCBzb2x2ZSgpIHsKICAgIGludCBuLGs7CiAgICBjaW4+Pm4+Pms7CiAgICBpbnQgQVtuXTsKICAgIGludCBjbnQgPSAwOwogICAgZm9yKGludCBpID0gMCA7IGk8biA7IGkrKyl7CiAgICAgICAgY2luPj5BW2ldOwogICAgfQogICAgZm9yKGludCBpID0gMCA7IGk8biA7IGkrKyl7CiAgICAgICAgaWYoQVtpXT09MSl7CiAgICAgICAgICAgIGNudCsrOwogICAgICAgIH0KICAgIH0KICAgIGludCBtYXhpID0gSU5UX01BWCxjbnQxPTA7CiAgICBmb3IoaW50IGkgPSAwIDsgaTxrIDsgaSsrKXsKICAgICAgICBpZihBW2ldPT0xKXsKICAgICAgICAgICAgY250MSsrOwogICAgICAgIH0KICAgIH0KICAgIG1heGkgPSBtaW4obWF4aSxjbnQxKTsKICAgIGludCBpID0gMCxqPWs7CiAgICB3aGlsZShqPG4pewogICAgICAgIGlmKEFbaV09PTEpewogICAgICAgICAgICBjbnQxLS07CiAgICAgICAgfQogICAgICAgIGlmKEFbal09PTEpewogICAgICAgICAgICBjbnQxKys7CiAgICAgICAgfQogICAgICAgIG1heGkgPSBtaW4obWF4aSxjbnQxKTsKICAgICAgICBpKys7CiAgICAgICAgaisrOwogICAgfQogICAgaW50IGQgPSBjbnQtbWF4aTsKICAgIGludCBlID0gKG1heGkqKG1heGkrMSkpLzI7CiAgICBjb3V0PDxkK2U8PGVuZGw7Cn0Kc2lnbmVkIG1haW4oKSB7CiAgICBpb3M6OnN5bmNfd2l0aF9zdGRpbyhmYWxzZSk7IGNpbi50aWUoTlVMTCk7CiAgICBpbnQgdDsKICAgIGNpbiA+PiB0OwogICAgd2hpbGUgKHQtLSkgewogICAgICAgIHNvbHZlKCk7CiAgICB9CiAgICByZXR1cm4gMDsKfQo=