#include <bits/stdc++.h>
using namespace std;
#define llong long long
#define N (int)1e5 + 6
const int BASE_DIGITS = 9;
const int BASE = 1000000000;
struct BigInt
{
int sign;
vector<int> a;
// -------------------- Constructors --------------------
// Default constructor.
BigInt() : sign(1) {}
// Constructor from long long.
BigInt(long long v)
{
*this = v;
}
BigInt &operator=(long long v)
{
sign = 1;
if (v < 0)
{
sign = -1;
v = -v;
}
a.clear();
for (; v > 0; v = v / BASE)
a.push_back(v % BASE);
return *this;
}
// Initialize from string.
BigInt(const string &s)
{
read(s);
}
// -------------------- Input / Output --------------------
void read(const string &s)
{
sign = 1;
a.clear();
int pos = 0;
while (pos < (int)s.size() && (s[pos] == '-' || s[pos] == '+'))
{
if (s[pos] == '-')
sign = -sign;
++pos;
}
for (int i = s.size() - 1; i >= pos; i -= BASE_DIGITS)
{
int x = 0;
for (int j = max(pos, i - BASE_DIGITS + 1); j <= i; j++)
x = x * 10 + s[j] - '0';
a.push_back(x);
}
trim();
}
friend istream &operator>>(istream &stream, BigInt &v)
{
string s;
stream >> s;
v.read(s);
return stream;
}
friend ostream &operator<<(ostream &stream, const BigInt &v)
{
if (v.sign == -1 && !v.isZero())
stream << '-';
stream << (v.a.empty() ? 0 : v.a.back());
for (int i = (int)v.a.size() - 2; i >= 0; --i)
stream << setw(BASE_DIGITS) << setfill('0') << v.a[i];
return stream;
}
// -------------------- Comparison --------------------
bool operator<(const BigInt &v) const
{
if (sign != v.sign)
return sign < v.sign;
if (a.size() != v.a.size())
return a.size() * sign < v.a.size() * v.sign;
for (int i = ((int)a.size()) - 1; i >= 0; i--)
if (a[i] != v.a[i])
return a[i] * sign < v.a[i] * sign;
return false;
}
bool operator>(const BigInt &v) const
{
return v < *this;
}
bool operator<=(const BigInt &v) const
{
return !(v < *this);
}
bool operator>=(const BigInt &v) const
{
return !(*this < v);
}
bool operator==(const BigInt &v) const
{
return !(*this < v) && !(v < *this);
}
bool operator!=(const BigInt &v) const
{
return *this < v || v < *this;
}
// Returns:
// 0 if |x| == |y|
// -1 if |x| < |y|
// 1 if |x| > |y|
friend int __compare_abs(const BigInt &x, const BigInt &y)
{
if (x.a.size() != y.a.size())
{
return x.a.size() < y.a.size() ? -1 : 1;
}
for (int i = ((int)x.a.size()) - 1; i >= 0; --i)
{
if (x.a[i] != y.a[i])
{
return x.a[i] < y.a[i] ? -1 : 1;
}
}
return 0;
}
// -------------------- Unary operator - and operators +- --------------------
BigInt operator-() const
{
BigInt res = *this;
if (isZero())
return res;
res.sign = -sign;
return res;
}
// Note: sign ignored.
void __internal_add(const BigInt &v)
{
if (a.size() < v.a.size())
{
a.resize(v.a.size(), 0);
}
for (int i = 0, carry = 0; i < (int)max(a.size(), v.a.size()) || carry; ++i)
{
if (i == (int)a.size())
a.push_back(0);
a[i] += carry + (i < (int)v.a.size() ? v.a[i] : 0);
carry = a[i] >= BASE;
if (carry)
a[i] -= BASE;
}
}
// Note: sign ignored.
void __internal_sub(const BigInt &v)
{
for (int i = 0, carry = 0; i < (int)v.a.size() || carry; ++i)
{
a[i] -= carry + (i < (int)v.a.size() ? v.a[i] : 0);
carry = a[i] < 0;
if (carry)
a[i] += BASE;
}
this->trim();
}
BigInt operator+=(const BigInt &v)
{
if (sign == v.sign)
{
__internal_add(v);
}
else
{
if (__compare_abs(*this, v) >= 0)
{
__internal_sub(v);
}
else
{
BigInt vv = v;
swap(*this, vv);
__internal_sub(vv);
}
}
return *this;
}
BigInt operator-=(const BigInt &v)
{
if (sign == v.sign)
{
if (__compare_abs(*this, v) >= 0)
{
__internal_sub(v);
}
else
{
BigInt vv = v;
swap(*this, vv);
__internal_sub(vv);
this->sign = -this->sign;
}
}
else
{
__internal_add(v);
}
return *this;
}
// Optimize operators + and - according to
// https://stackoverflow.com/questions/13166079/move-semantics-and-pass-by-rvalue-reference-in-overloaded-arithmetic
template <typename L, typename R>
typename std::enable_if<
std::is_convertible<L, BigInt>::value &&
std::is_convertible<R, BigInt>::value &&
std::is_lvalue_reference<R &&>::value,
BigInt>::type friend
operator+(L &&l, R &&r)
{
BigInt result(std::forward<L>(l));
result += r;
return result;
}
template <typename L, typename R>
typename std::enable_if<
std::is_convertible<L, BigInt>::value &&
std::is_convertible<R, BigInt>::value &&
std::is_rvalue_reference<R &&>::value,
BigInt>::type friend
operator+(L &&l, R &&r)
{
BigInt result(std::move(r));
result += l;
return result;
}
template <typename L, typename R>
typename std::enable_if<
std::is_convertible<L, BigInt>::value &&
std::is_convertible<R, BigInt>::value,
BigInt>::type friend
operator-(L &&l, R &&r)
{
BigInt result(std::forward<L>(l));
result -= r;
return result;
}
// -------------------- Operators * / % --------------------
friend pair<BigInt, BigInt> divmod(const BigInt &a1, const BigInt &b1)
{
assert(b1 > 0); // divmod not well-defined for b < 0.
long long norm = BASE / (b1.a.back() + 1);
BigInt a = a1.abs() * norm;
BigInt b = b1.abs() * norm;
BigInt q = 0, r = 0;
q.a.resize(a.a.size());
for (int i = a.a.size() - 1; i >= 0; i--)
{
r *= BASE;
r += a.a[i];
long long s1 = r.a.size() <= b.a.size() ? 0 : r.a[b.a.size()];
long long s2 = r.a.size() <= b.a.size() - 1 ? 0 : r.a[b.a.size() - 1];
long long d = ((long long)BASE * s1 + s2) / b.a.back();
r -= b * d;
while (r < 0)
{
r += b, --d;
}
q.a[i] = d;
}
q.sign = a1.sign * b1.sign;
r.sign = a1.sign;
q.trim();
r.trim();
auto res = make_pair(q, r / norm);
if (res.second < 0)
res.second += b1;
return res;
}
BigInt operator/(const BigInt &v) const
{
return divmod(*this, v).first;
}
BigInt operator%(const BigInt &v) const
{
return divmod(*this, v).second;
}
void operator/=(int v)
{
assert(v > 0); // operator / not well-defined for v <= 0.
if (llabs(v) >= BASE)
{
*this /= BigInt(v);
return;
}
if (v < 0)
sign = -sign, v = -v;
for (int i = (int)a.size() - 1, rem = 0; i >= 0; --i)
{
long long cur = a[i] + rem * (long long)BASE;
a[i] = (int)(cur / v);
rem = (int)(cur % v);
}
trim();
}
BigInt operator/(int v) const
{
assert(v > 0); // operator / not well-defined for v <= 0.
if (llabs(v) >= BASE)
{
return *this / BigInt(v);
}
BigInt res = *this;
res /= v;
return res;
}
void operator/=(const BigInt &v)
{
*this = *this / v;
}
long long operator%(long long v) const
{
assert(v > 0); // operator / not well-defined for v <= 0.
assert(v < BASE);
int m = 0;
for (int i = a.size() - 1; i >= 0; --i)
m = (a[i] + m * (long long)BASE) % v;
return m * sign;
}
void operator*=(int v)
{
if (llabs(v) >= BASE)
{
*this *= BigInt(v);
return;
}
if (v < 0)
sign = -sign, v = -v;
for (int i = 0, carry = 0; i < (int)a.size() || carry; ++i)
{
if (i == (int)a.size())
a.push_back(0);
long long cur = a[i] * (long long)v + carry;
carry = (int)(cur / BASE);
a[i] = (int)(cur % BASE);
//asm("divl %%ecx" : "=a"(carry), "=d"(a[i]) : "A"(cur), "c"(base));
/*
int val;
__asm {
lea esi, cur
mov eax, [esi]
mov edx, [esi+4]
mov ecx, base
div ecx
mov carry, eax
mov val, edx;
}
a[i] = val;
*/
}
trim();
}
BigInt operator*(int v) const
{
if (llabs(v) >= BASE)
{
return *this * BigInt(v);
}
BigInt res = *this;
res *= v;
return res;
}
// Convert BASE 10^old --> 10^new.
static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits)
{
vector<long long> p(max(old_digits, new_digits) + 1);
p[0] = 1;
for (int i = 1; i < (int)p.size(); i++)
p[i] = p[i - 1] * 10;
vector<int> res;
long long cur = 0;
int cur_digits = 0;
for (int i = 0; i < (int)a.size(); i++)
{
cur += a[i] * p[cur_digits];
cur_digits += old_digits;
while (cur_digits >= new_digits)
{
res.push_back((long long)(cur % p[new_digits]));
cur /= p[new_digits];
cur_digits -= new_digits;
}
}
res.push_back((int)cur);
while (!res.empty() && !res.back())
res.pop_back();
return res;
}
void fft(vector<complex<double>> &a, bool invert) const
{
int n = (int)a.size();
for (int i = 1, j = 0; i < n; ++i)
{
int bit = n >> 1;
for (; j >= bit; bit >>= 1)
j -= bit;
j += bit;
if (i < j)
swap(a[i], a[j]);
}
for (int len = 2; len <= n; len <<= 1)
{
double ang = 2 * 3.14159265358979323846 / len * (invert ? -1 : 1);
complex<double> wlen(cos(ang), sin(ang));
for (int i = 0; i < n; i += len)
{
complex<double> w(1);
for (int j = 0; j < len / 2; ++j)
{
complex<double> u = a[i + j];
complex<double> v = a[i + j + len / 2] * w;
a[i + j] = u + v;
a[i + j + len / 2] = u - v;
w *= wlen;
}
}
}
if (invert)
for (int i = 0; i < n; ++i)
a[i] /= n;
}
void multiply_fft(const vector<int> &a, const vector<int> &b, vector<int> &res) const
{
vector<complex<double>> fa(a.begin(), a.end());
vector<complex<double>> fb(b.begin(), b.end());
int n = 1;
while (n < (int)max(a.size(), b.size()))
n <<= 1;
n <<= 1;
fa.resize(n);
fb.resize(n);
fft(fa, false);
fft(fb, false);
for (int i = 0; i < n; ++i)
fa[i] *= fb[i];
fft(fa, true);
res.resize(n);
long long carry = 0;
for (int i = 0; i < n; ++i)
{
long long t = (long long)(fa[i].real() + 0.5) + carry;
carry = t / 1000;
res[i] = t % 1000;
}
}
BigInt mul_simple(const BigInt &v) const
{
BigInt res;
res.sign = sign * v.sign;
res.a.resize(a.size() + v.a.size());
for (int i = 0; i < (int)a.size(); ++i)
if (a[i])
for (int j = 0, carry = 0; j < (int)v.a.size() || carry; ++j)
{
long long cur = res.a[i + j] + (long long)a[i] * (j < (int)v.a.size() ? v.a[j] : 0) + carry;
carry = (int)(cur / BASE);
res.a[i + j] = (int)(cur % BASE);
}
res.trim();
return res;
}
typedef vector<long long> vll;
static vll karatsubaMultiply(const vll &a, const vll &b)
{
int n = a.size();
vll res(n + n);
if (n <= 32)
{
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
res[i + j] += a[i] * b[j];
return res;
}
int k = n >> 1;
vll a1(a.begin(), a.begin() + k);
vll a2(a.begin() + k, a.end());
vll b1(b.begin(), b.begin() + k);
vll b2(b.begin() + k, b.end());
vll a1b1 = karatsubaMultiply(a1, b1);
vll a2b2 = karatsubaMultiply(a2, b2);
for (int i = 0; i < k; i++)
a2[i] += a1[i];
for (int i = 0; i < k; i++)
b2[i] += b1[i];
vll r = karatsubaMultiply(a2, b2);
for (int i = 0; i < (int)a1b1.size(); i++)
r[i] -= a1b1[i];
for (int i = 0; i < (int)a2b2.size(); i++)
r[i] -= a2b2[i];
for (int i = 0; i < (int)r.size(); i++)
res[i + k] += r[i];
for (int i = 0; i < (int)a1b1.size(); i++)
res[i] += a1b1[i];
for (int i = 0; i < (int)a2b2.size(); i++)
res[i + n] += a2b2[i];
return res;
}
BigInt mul_karatsuba(const BigInt &v) const
{
vector<int> a6 = convert_base(this->a, BASE_DIGITS, 6);
vector<int> b6 = convert_base(v.a, BASE_DIGITS, 6);
vll a(a6.begin(), a6.end());
vll b(b6.begin(), b6.end());
while (a.size() < b.size())
a.push_back(0);
while (b.size() < a.size())
b.push_back(0);
while (a.size() & (a.size() - 1))
a.push_back(0), b.push_back(0);
vll c = karatsubaMultiply(a, b);
BigInt res;
res.sign = sign * v.sign;
long long carry = 0;
for (int i = 0; i < (int)c.size(); i++)
{
long long cur = c[i] + carry;
res.a.push_back((int)(cur % 1000000));
carry = cur / 1000000;
}
res.a = convert_base(res.a, 6, BASE_DIGITS);
res.trim();
return res;
}
void operator*=(const BigInt &v)
{
*this = *this * v;
}
BigInt operator*(const BigInt &v) const
{
if (a.size() * v.a.size() <= 1000111)
return mul_simple(v);
if (a.size() > 500111 || v.a.size() > 500111)
return mul_fft(v);
return mul_karatsuba(v);
}
BigInt mul_fft(const BigInt &v) const
{
BigInt res;
res.sign = sign * v.sign;
multiply_fft(convert_base(a, BASE_DIGITS, 3), convert_base(v.a, BASE_DIGITS, 3), res.a);
res.a = convert_base(res.a, 3, BASE_DIGITS);
res.trim();
return res;
}
// -------------------- Misc --------------------
BigInt abs() const
{
BigInt res = *this;
res.sign *= res.sign;
return res;
}
void trim()
{
while (!a.empty() && !a.back())
a.pop_back();
if (a.empty())
sign = 1;
}
bool isZero() const
{
return a.empty() || (a.size() == 1 && !a[0]);
}
friend BigInt gcd(const BigInt &a, const BigInt &b)
{
return b.isZero() ? a : gcd(b, a % b);
}
friend BigInt lcm(const BigInt &a, const BigInt &b)
{
return a / gcd(a, b) * b;
}
friend BigInt sqrt(const BigInt &a1)
{
BigInt a = a1;
while (a.a.empty() || a.a.size() % 2 == 1)
a.a.push_back(0);
int n = a.a.size();
int firstDigit = (int)sqrt((double)a.a[n - 1] * BASE + a.a[n - 2]);
int norm = BASE / (firstDigit + 1);
a *= norm;
a *= norm;
while (a.a.empty() || a.a.size() % 2 == 1)
a.a.push_back(0);
BigInt r = (long long)a.a[n - 1] * BASE + a.a[n - 2];
firstDigit = (int)sqrt((double)a.a[n - 1] * BASE + a.a[n - 2]);
int q = firstDigit;
BigInt res;
for (int j = n / 2 - 1; j >= 0; j--)
{
for (;; --q)
{
BigInt r1 = (r - (res * 2 * BigInt(BASE) + q) * q) * BigInt(BASE) * BigInt(BASE) + (j > 0 ? (long long)a.a[2 * j - 1] * BASE + a.a[2 * j - 2] : 0);
if (r1 >= 0)
{
r = r1;
break;
}
}
res *= BASE;
res += q;
if (j > 0)
{
int d1 = res.a.size() + 2 < r.a.size() ? r.a[res.a.size() + 2] : 0;
int d2 = res.a.size() + 1 < r.a.size() ? r.a[res.a.size() + 1] : 0;
int d3 = res.a.size() < r.a.size() ? r.a[res.a.size()] : 0;
q = ((long long)d1 * BASE * BASE + (long long)d2 * BASE + d3) / (firstDigit * 2);
}
}
res.trim();
return res / norm;
}
};
set<BigInt> S;
BigInt a, b, res1, res2;
long long po(long long a, long long n)
{
long long res = a, ans = 1;
while (1)
{
if (n == 0)
break;
if (n % 2)
ans = ans * res;
res = res * res;
n = n / 2;
}
return ans;
}
long long sqrt3(long long n)
{
long long l = 1, r = 1000000;
while (l <= r)
{
long long mid = (l + r) / 2;
if ((long long)mid * mid * mid <= n)
{
l = mid + 1;
}
else
{
r = mid - 1;
}
}
return l - 1;
}
signed main()
{
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
long long n, k;
cin >> n;
k = sqrt3(n);
BigInt ans = 0;
for (long long i = 1; i < k; i++)
{
long long tmp = i * (po(i + 1, 3) - 1 - po(i, 3) + 1);
ans = ans + tmp;
}
long long tmp1 = k * (n - po(k, 3) + 1);
ans = ans + tmp1;
cout << ans;
return 0;
}