fork download
  1. #include <iostream>
  2. #include <algorithm>
  3. #include <cmath>
  4. #include <string>
  5. #include <vector>
  6. #include <queue>
  7. #include <stack>
  8. #include <set>
  9. #include <map>
  10. #include <iomanip>
  11. #include <numeric>
  12. #include <unordered_map>
  13. #include <unordered_set>
  14. #include <climits>
  15.  
  16. #define fora(e,v) for(auto &e: v)
  17. #define srt(v) sort(v.begin(), v.end())
  18. #define srtR(v) sort(v.begin(), v.end(), greater<int>())
  19. #define fill(arr,value) memset(arr, value, sizeof(arr))
  20. #define ll long long
  21. #define all(v) v.begin(), v.end()
  22. #define sz(v) ((int)v.size())
  23.  
  24. using namespace std;
  25.  
  26. const int MAX = 2 * 1e5 + 5;
  27. const int OO = INT_MAX;
  28. const int MOD = 1e9 + 7;
  29.  
  30. vector<int> fact(MAX);
  31.  
  32. ll gcd(ll a, ll b) {
  33. if (!b) {
  34. return a;
  35. }
  36. return gcd(b, a % b);
  37. }
  38.  
  39. ll lcm(ll a, ll b) {
  40. return a / gcd(a, b) * b;
  41. }
  42.  
  43. ll power(ll base, ll pow) {
  44. if (pow == 0) {
  45. return 1;
  46. }
  47.  
  48. ll half = power(base, pow / 2);
  49. half = (half * half) % MOD;
  50.  
  51. if (pow % 2 == 1) {
  52. half = (half * base) % MOD;
  53. }
  54.  
  55. return half;
  56. }
  57.  
  58. ll add(ll a, ll b) {
  59. return ((a % MOD) + (b % MOD)) % MOD;
  60. }
  61.  
  62. ll sub(ll a, ll b) {
  63. return (((a % MOD) - (b % MOD)) % MOD + MOD) % MOD;
  64. }
  65.  
  66. ll mul(ll a, ll b) {
  67. return ((a % MOD) * (b % MOD)) % MOD;
  68. }
  69.  
  70. ll inv(ll base) {
  71. return power(base, MOD - 2);
  72. }
  73.  
  74. ll divide(ll a, ll b) {
  75. return mul(a, inv(b));
  76. }
  77.  
  78. ll nCr(ll n, ll r) {
  79. if (r > n) return 0;
  80. return mul(fact[n], inv(mul(fact[r], fact[n - r])));
  81. }
  82.  
  83. ll nPr(int n, int r) {
  84. return divide(fact[n], fact[n - r]);
  85. }
  86.  
  87. void doFact() {
  88. fact[0] = 1;
  89. for (int i = 1; i < MAX; i++) {
  90. fact[i] = mul(i, fact[i - 1]);
  91. }
  92. }
  93.  
  94. bool isPrime(ll n) {
  95. if (n == 1) return false;
  96. if (n % 2 == 0) return n == 2;
  97. for (int i = 3; i * i <= n; i += 2) {
  98. if (n % i == 0) return false;
  99. }
  100. return true;
  101. }
  102.  
  103. int n, q;
  104.  
  105. struct sgTree {
  106. int size;
  107. vector<ll> values;
  108. vector<ll> mins;
  109.  
  110. ll noOperation = LLONG_MAX;
  111.  
  112. void init(int n) {
  113. size = 1;
  114. while (size < n) size *= 2;
  115. values.resize(2 * size,0);
  116. mins.resize(2 * size,0);
  117. }
  118.  
  119. void set(int idx, ll val, int root, int lx, int rx) {
  120. if (rx - lx == 1) {
  121. values[root] = val;
  122. return;
  123. }
  124. int mid = lx + (rx - lx) / 2;
  125. if (idx < mid) {
  126. set(idx, val, 2 * root + 1, lx, mid);
  127. } else {
  128. set(idx, val, 2 * root + 2, mid, rx);
  129. }
  130. values[root] = values[2 * root + 1] + values[2 * root + 2];
  131. }
  132.  
  133. void set(int idx, ll val) {
  134. set(idx, val, 0, 0, size);
  135. }
  136.  
  137. void modify(ll l, ll r, ll val,int root, int lx, int rx) {
  138. if (lx >= r || rx <= l) return;
  139. if (lx >= l && rx <= r) {
  140. values[root] += val;
  141. mins[root] += val;
  142. return;
  143. }
  144. int mid = lx + (rx - lx) / 2;
  145. modify(l, r,val, 2 * root + 1, lx, mid);
  146. modify(l, r,val, 2 * root + 2, mid, rx);
  147. mins[root] = min(mins[2 * root + 1],mins[2 * root + 2]) + values[root];
  148. }
  149.  
  150. void modify(ll l, ll r, ll val) {
  151. modify(l,r,val,0,0,size);
  152. }
  153.  
  154. ll getMin(int l, int r, int root, int lx, int rx) {
  155. if (lx >= r || rx <= l) return LLONG_MAX;
  156. if (lx >= l && rx <= r) return mins[root];
  157. int mid = lx + (rx - lx) / 2;
  158. ll mn1 = getMin(l, r, 2 * root + 1, lx, mid);
  159. ll mn2 = getMin(l, r, 2 * root + 2, mid, rx);
  160. return min(mn1,mn2) + values[root];
  161. }
  162.  
  163. ll getMin(int l,int r) {
  164. return getMin(l, r, 0, 0, size);
  165. }
  166.  
  167. ll calc(int l, int r, int root, int lx, int rx) {
  168. if (lx >= r || rx <= l) return 0;
  169. if (lx >= l && rx <= r) return values[root];
  170. int mid = lx + (rx - lx) / 2;
  171. ll sum1 = calc(l, r, 2 * root + 1, lx, mid);
  172. ll sum2 = calc(l, r, 2 * root + 2, mid, rx);
  173. return sum1 + sum2;
  174. }
  175.  
  176. ll calc(int l,int r) {
  177. return calc(l, r, 0, 0, size);
  178. }
  179.  
  180. };
  181.  
  182. void solve() {
  183.  
  184. cin >> n >> q;
  185.  
  186. sgTree seg;
  187. seg.init(n);
  188.  
  189. while(q--) {
  190.  
  191. int op;cin>>op;
  192.  
  193. if(op == 1) {
  194.  
  195. ll l,r,val;cin>>l>>r>>val;
  196. seg.modify(l,r,val);
  197.  
  198. }
  199. else {
  200. ll l,r;cin >> l>> r;
  201. cout<<seg.getMin(l,r)<<"\n";
  202. }
  203.  
  204. }
  205.  
  206. }
  207.  
  208. int main() {
  209. ll t = 1;
  210. //cin >> t;
  211. while (t--) {
  212. solve();
  213. }
  214. return 0;
  215. }
  216.  
Success #stdin #stdout 0.01s 5288KB
stdin
Standard input is empty
stdout
Standard output is empty