#include <bits/stdc++.h>
#include <chrono>
using namespace std;
using namespace chrono;
// "AJEET JAIN"----"JAI JINENDRA"
/* "णमो अरिहंताणं",
"णमो सिद्धाणं",
"णमो आयरियाणं",
"णमो उवज्झायाणं",
"णमो लोए सव्वसाहूणं",
"",
"एसो पंच नमोक्कारो, सव्व पावप्पणासणो",
"मंगलाणं च सव्वेसिं, पडमं हवै मंगलं", */
// Aliases to op
using ll = long long;
using ull = unsigned long long;
using ld = double;
using vll = vector<ll>;
// Constants
constexpr ll INF = 4e18;
constexpr ld EPS = 1e-9;
constexpr ll MOD = 1e9 + 7;
// Macros
#define F first
#define S second
#define all(x) begin(x), end(x)
#define allr(x) rbegin(x), rend(x)
#define py cout<<"YES\n";
#define pn cout<<"NO\n";
#define forn(i,n) for(int i=0;i<n;i++)
#define for1(i,n) for(int i=1;i<=n;i++)
// #define insert push_back
#define pb push_back
#define MP make_pair
#define endl '\n'
/*
remove substring or subarray ---> try to think about sliding w
*/
/*
Golden Rule
1) problem is easy
2) proofs is easy
3) implementation is easy
/*
ROUGH --
ai*(j - 1) + bi*(n - j) = min
ai and bi for every i is constant we can play with position
expand form = ai*j - ai + bi*n -bi*j
rearrange -> (ai - bi)*j + bi*n - ai
sum of all i from 1 <= i <= n -->> ((a1 - b1)j1 + b1*n - a1) + ((a2 - b2)j2 + b1*n - a2)......+ ((an - bn)jn + bn*n - an)
=> (a1 - b1)j1 + (a2 - b2)j2 ... + (an - bn)jn + (b1 + b2 + .... bn) - (a1 + a2 + .... an)
now just choose ji according to (ai - bi)
*/
void AJNJ(){
int n;
cin >> n;
int x = n;
vector<ll> v;
ll sum_a = 0 , sum_b = 0;
while(x--){
ll a , b;
cin >> a >> b;
sum_a += a;
sum_b += b;
v.push_back(a - b);
}
sort(allr(v));
ll ans = 0;
for(int i = 0 ; i < v.size() ; i++){
ans += v[i]*(i + 1);
}
cout << ans + ((n*sum_b) - sum_a) << endl;
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int T = 1;
// cin>>T;
auto start1 = high_resolution_clock::now();
while(T--){
AJNJ();
}
auto stop1 = high_resolution_clock::now();
auto duration = duration_cast<microseconds>(stop1 - start1);
cerr << "Time: " << duration . count() / 1000 << " ms" << endl;
return 0;
}
ICAgICNpbmNsdWRlIDxiaXRzL3N0ZGMrKy5oPgogICAgI2luY2x1ZGUgPGNocm9ubz4KICAgIHVzaW5nIG5hbWVzcGFjZSBzdGQ7CiAgICB1c2luZyBuYW1lc3BhY2UgY2hyb25vOwogICAgLy8gIkFKRUVUIEpBSU4iLS0tLSJKQUkgSklORU5EUkEiICAKICAgIC8qICLgpKPgpK7gpYsg4KSF4KSw4KS/4KS54KSC4KSk4KS+4KSj4KSCIiwKICAgICAgICAi4KSj4KSu4KWLIOCkuOCkv+CkpuCljeCkp+CkvuCko+CkgiIsCiAgICAgICAgIuCko+CkruCliyDgpIbgpK/gpLDgpL/gpK/gpL7gpKPgpIIiLAogICAgICAgICLgpKPgpK7gpYsg4KSJ4KS14KSc4KWN4KSd4KS+4KSv4KS+4KSj4KSCIiwKICAgICAgICAi4KSj4KSu4KWLIOCksuCli+CkjyDgpLjgpLXgpY3gpLXgpLjgpL7gpLngpYLgpKPgpIIiLAogICAgICAgICIiLAogICAgICAgICLgpI/gpLjgpYsg4KSq4KSC4KSaIOCkqOCkruCli+CkleCljeCkleCkvuCksOCliywg4KS44KS14KWN4KS1IOCkquCkvuCkteCkquCljeCkquCko+CkvuCkuOCko+CliyIsCiAgICAgICAgIuCkruCkguCkl+CksuCkvuCko+CkgiDgpJog4KS44KS14KWN4KS14KWH4KS44KS/4KSCLCDgpKrgpKHgpK7gpIIg4KS54KS14KWIIOCkruCkguCkl+CksuCkgiIsICAgKi8KICAgIAogICAgCiAgICAvLyBBbGlhc2VzIHRvIG9wCiAgICB1c2luZyBsbCA9IGxvbmcgbG9uZzsKICAgIHVzaW5nIHVsbCA9IHVuc2lnbmVkIGxvbmcgbG9uZzsKICAgIHVzaW5nIGxkID0gZG91YmxlOwogICAgdXNpbmcgdmxsID0gdmVjdG9yPGxsPjsKICAgIAogICAgCiAgICAvLyBDb25zdGFudHMKICAgIGNvbnN0ZXhwciBsbCBJTkYgPSA0ZTE4OwogICAgY29uc3RleHByIGxkIEVQUyA9IDFlLTk7CiAgICBjb25zdGV4cHIgbGwgTU9EID0gMWU5ICsgNzsKCgogICAgCiAgICAvLyBNYWNyb3MKICAgICNkZWZpbmUgRiBmaXJzdAogICAgI2RlZmluZSBTIHNlY29uZAogICAgI2RlZmluZSBhbGwoeCkgYmVnaW4oeCksIGVuZCh4KQogICAgI2RlZmluZSBhbGxyKHgpIHJiZWdpbih4KSwgcmVuZCh4KQogICAgI2RlZmluZSBweSBjb3V0PDwiWUVTXG4iOwogICAgI2RlZmluZSBwbiBjb3V0PDwiTk9cbiI7CiAgICAjZGVmaW5lIGZvcm4oaSxuKSBmb3IoaW50IGk9MDtpPG47aSsrKQogICAgI2RlZmluZSBmb3IxKGksbikgZm9yKGludCBpPTE7aTw9bjtpKyspCgogICAgLy8gI2RlZmluZSBpbnNlcnQgcHVzaF9iYWNrCiAgICAjZGVmaW5lIHBiIHB1c2hfYmFjawogICAgI2RlZmluZSBNUCBtYWtlX3BhaXIKICAgICNkZWZpbmUgZW5kbCAnXG4nCgogICAgLyoKICAgICAgcmVtb3ZlIHN1YnN0cmluZyBvciBzdWJhcnJheSAtLS0+IHRyeSB0byB0aGluayBhYm91dCBzbGlkaW5nIHcKICAgIAogICAgKi8gICAgICAgICAgICAgICAgICAKCiAgICAgLyoKICAgICAgCiAgICAgR29sZGVuIFJ1bGUKCiAgICAgMSkgcHJvYmxlbSBpcyBlYXN5CiAgICAgMikgcHJvb2ZzIGlzIGVhc3kKICAgICAzKSBpbXBsZW1lbnRhdGlvbiBpcyBlYXN5CiAgICAgCiAgICAgLyoKICAgICAgICAgUk9VR0ggLS0KCiAgICAgICAgIGFpKihqIC0gMSkgKyBiaSoobiAtIGopID0gbWluCiAgICAgICAgICAgYWkgYW5kIGJpIGZvciBldmVyeSBpIGlzIGNvbnN0YW50IHdlIGNhbiBwbGF5IHdpdGggcG9zaXRpb24KICAgICAgICAgICAgIGV4cGFuZCBmb3JtID0gYWkqaiAtIGFpICsgYmkqbiAtYmkqagogICAgICAgICAgICAgICAgIHJlYXJyYW5nZSAtPiAoYWkgLSBiaSkqaiArIGJpKm4gLSBhaQogICAgICAgICAgICAgICAgICAgc3VtIG9mIGFsbCBpIGZyb20gMSA8PSBpIDw9IG4gLS0+PiAoKGExIC0gYjEpajEgKyBiMSpuIC0gYTEpICsgKChhMiAtIGIyKWoyICsgYjEqbiAtIGEyKS4uLi4uLisgKChhbiAtIGJuKWpuICsgYm4qbiAtIGFuKQogICAgICAgICAgICAgICAgICAgICA9PiAoYTEgLSBiMSlqMSArIChhMiAtIGIyKWoyIC4uLiArIChhbiAtIGJuKWpuICsgKGIxICsgYjIgKyAuLi4uIGJuKSAtIChhMSArIGEyICsgLi4uLiBhbikKICAgICAgICAgICAgICAgICAgICAgICAgIG5vdyBqdXN0IGNob29zZSBqaSBhY2NvcmRpbmcgdG8gKGFpIC0gYmkpCiAgICAgICAgICAgICAgICAgCiAgICAgKi8KICAgIAogICAgdm9pZCBBSk5KKCl7CiAgICAgICBpbnQgbjsKICAgICAgIGNpbiA+PiBuOwogICAgICAgaW50IHggPSBuOwogICAgICAgdmVjdG9yPGxsPiB2OwogICAgICAgbGwgc3VtX2EgPSAwICwgc3VtX2IgPSAwOwogICAgICAgd2hpbGUoeC0tKXsKICAgICAgICAgIGxsIGEgLCBiOwogICAgICAgICAgY2luID4+IGEgPj4gYjsKICAgICAgICAgIHN1bV9hICs9IGE7IAogICAgICAgICAgc3VtX2IgKz0gYjsKICAgICAgICAgIHYucHVzaF9iYWNrKGEgLSBiKTsKICAgICAgIH0KICAgICAgIHNvcnQoYWxscih2KSk7CiAgICAgICBsbCBhbnMgPSAwOwogICAgICAgZm9yKGludCBpID0gMCA7IGkgPCB2LnNpemUoKSA7IGkrKyl7CiAgICAgICAgICAgYW5zICs9IHZbaV0qKGkgKyAxKTsKICAgICAgIH0KCiAgICAgICBjb3V0IDw8IGFucyArICgobipzdW1fYikgLSBzdW1fYSkgPDwgZW5kbDsKCiAgICB9CgogICAgCiAgICBpbnQgbWFpbigpewogICAgICAgIGlvczo6c3luY193aXRoX3N0ZGlvKDApOwogICAgICAgIGNpbi50aWUoMCk7CiAgICAgICAgY291dC50aWUoMCk7CiAgICAgICAgaW50IFQgPSAxOwogICAgICAgIC8vIGNpbj4+VDsKICAgICAgICBhdXRvIHN0YXJ0MSA9IGhpZ2hfcmVzb2x1dGlvbl9jbG9jazo6bm93KCk7CiAgICAgICAgd2hpbGUoVC0tKXsKICAgICAgICAgICAgQUpOSigpOwogICAgICAgIH0KICAgICAgICBhdXRvIHN0b3AxID0gaGlnaF9yZXNvbHV0aW9uX2Nsb2NrOjpub3coKTsKICAgICAgICBhdXRvIGR1cmF0aW9uID0gZHVyYXRpb25fY2FzdDxtaWNyb3NlY29uZHM+KHN0b3AxIC0gc3RhcnQxKTsKICAgICAgICBjZXJyIDw8ICJUaW1lOiAiIDw8IGR1cmF0aW9uIC4gY291bnQoKSAvIDEwMDAgPDwgIiBtcyIgPDwgZW5kbDsKICAgIAogICAgICAgIHJldHVybiAwOwogICAgfQ==