dff= readRDS( "./dff.rds" )
# 改一下網格點順序
SNdff= data.frame ( S1.N86 = dff$S1.N86 %>% unique %>% sort)
SNdff$reciprocal= 1 / ( SNdff$S1.N86 )
SNdff$rank= SNdff$reciprocal %>% rank
dff= merge( x= dff, y= SNdff, by= c( 'S1.N86' ) , all.x = T)
dff= data.frame ( dff)
dff$S1.N86 .new = factor( dff$S1.N86 , levels= c( rev( c( dff$S1.N86 %>% unique %>% sort %>% as.character ) ) ) )
dff$S1.N86 .new %>% class
#確認一下病例分布
gggg2= aggregate( dff[ , 15 ] , list( dff$W1.E41 , dff$S1.N86 ) , sum)
dff= dff[ ! is.na ( dff$rainMA) , ]
dff= dff[ ! is.na ( dff$t2mMA) , ]
dff$N %>% class
ggplot( dff) +
facet_grid( S1.N86 .new + S1.N86 ~W1.E41 ) +
geom_line( data= dff, aes( x= date, y= rainMA/ 5 ) , color= 'steelblue' , size= 0.1 ) +
geom_point( data= dff, aes( x= date, y= t2mMA) , color= 'red' , size= 0.05 , alpha= 0.5 ) +
geom_bar( data= dff, aes( x= date, y= ( dff$N) ) , stat= "identity" , color= '#d9ef8b' , alpha= 0.1 ) +
#scale_y_continuous(sec.axis = sec_axis(~.*5, name = "Relative humidity [%]"))+
#geom_text(aes(label=N), vjust=1, color="white", size=3.5)+
theme( axis.text .x = element_blank( ) ,
axis.ticks .x = element_blank( ) ,
axis.title .x = element_blank( ) ) +
ggtitle( paste0( "grid SickNum " , yy, ' ' , city) )
ZGZmPXJlYWRSRFMoIi4vZGZmLnJkcyIpCgojIOaUueS4gOS4i+e2suagvOm7numghuW6jwpTTmRmZj1kYXRhLmZyYW1lKFMxLk44Nj1kZmYkUzEuTjg2ICU+JSB1bmlxdWUgJT4lIHNvcnQpClNOZGZmJHJlY2lwcm9jYWw9MS8oU05kZmYkUzEuTjg2KQpTTmRmZiRyYW5rPVNOZGZmJHJlY2lwcm9jYWwgJT4lIHJhbmsKCmRmZj1tZXJnZSh4PWRmZiwgeT1TTmRmZiwgYnk9YygnUzEuTjg2JyksIGFsbC54ID0gVCkKZGZmPWRhdGEuZnJhbWUoZGZmKQoKZGZmJFMxLk44Ni5uZXcgPSBmYWN0b3IoZGZmJFMxLk44NiwgbGV2ZWxzPWMocmV2KGMoZGZmJFMxLk44NiAlPiUgdW5pcXVlICU+JSBzb3J0ICU+JSBhcy5jaGFyYWN0ZXIpKSkpCmRmZiRTMS5OODYubmV3ICU+JSBjbGFzcwoKI+eiuuiqjeS4gOS4i+eXheS+i+WIhuW4gwpnZ2dnMj1hZ2dyZWdhdGUoZGZmWywgMTVdLCBsaXN0KGRmZiRXMS5FNDEsZGZmJFMxLk44NiksIHN1bSkgCgoKZGZmPWRmZlshaXMubmEoZGZmJHJhaW5NQSksXQpkZmY9ZGZmWyFpcy5uYShkZmYkdDJtTUEpLF0KZGZmJE4gJT4lIGNsYXNzCgpnZ3Bsb3QoZGZmKSsKICBmYWNldF9ncmlkKFMxLk44Ni5uZXcrUzEuTjg2flcxLkU0MSkrCiAgZ2VvbV9saW5lKGRhdGE9ZGZmLCBhZXMoeD1kYXRlLCB5PXJhaW5NQS81KSwgY29sb3I9J3N0ZWVsYmx1ZScsIHNpemU9MC4xKSsKICBnZW9tX3BvaW50KGRhdGE9ZGZmLCBhZXMoeD1kYXRlLCB5PXQybU1BKSwgY29sb3I9J3JlZCcsIHNpemU9MC4wNSwgYWxwaGE9MC41KSsgCiAgZ2VvbV9iYXIoZGF0YT1kZmYsIGFlcyh4PWRhdGUsIHk9KGRmZiROKSksIHN0YXQ9ImlkZW50aXR5IiwgY29sb3I9JyNkOWVmOGInLCBhbHBoYT0wLjEpKwogIAogICNzY2FsZV95X2NvbnRpbnVvdXMoc2VjLmF4aXMgPSBzZWNfYXhpcyh+Lio1LCBuYW1lID0gIlJlbGF0aXZlIGh1bWlkaXR5IFslXSIpKSsKICAjZ2VvbV90ZXh0KGFlcyhsYWJlbD1OKSwgdmp1c3Q9MSwgY29sb3I9IndoaXRlIiwgc2l6ZT0zLjUpKwogIHRoZW1lKGF4aXMudGV4dC54ID0gZWxlbWVudF9ibGFuaygpLAogICAgICAgIGF4aXMudGlja3MueCA9IGVsZW1lbnRfYmxhbmsoKSwKICAgICAgICBheGlzLnRpdGxlLng9ZWxlbWVudF9ibGFuaygpKSsKICAKICBnZ3RpdGxlKHBhc3RlMCgiZ3JpZCBTaWNrTnVtICIseXksJyAnLGNpdHkpKQ==