s = 'TEStlabZ\nEDULABZ\nINTERNATIONAL\nLOGARITHMS AND INDICES\n\nQ.1. (A) Convert each of the following to logarithmic form.\n(i) \\( 5^{2}=25 \\)\n(ii) \\( 3^{-3}=\\frac{1}{27} \\)\n(iii) \\( (64)^{\\frac{1}{3}}=4 \\)\n(iv) \\( 6^{0}=1 \\)\n(v) \\( 10^{-2}=0.01 \\) (vi) \\( 4^{-1}=\\frac{1}{4} \\)\nAns. We know that \\( a^{b}=x \\Rightarrow b=\\log _{a} x \\)\n(i) \\( 5^{2}=25 \\quad \\therefore \\log _{5} 25=2 \\)\n(ii) \\( 3^{-3}=\\frac{1}{27} \\therefore \\log _{3}\\left(\\frac{1}{27}\\right)=-3 \\)\n(iii) \\( (64)^{\\frac{1}{3}}=4 \\therefore \\log _{64} 4=\\frac{1}{3} \\)\n(iv) \\( 6^{0}=1 \\quad \\therefore \\log _{6} 1=0 \\)\n(v) \\( 10^{-2}=0.01 \\therefore \\log _{10}(0.01)=-2 \\)\n(vi) \\( 4^{-1}=\\frac{1}{4} \\therefore \\log _{4}\\left(\\frac{1}{4}\\right)=-1 \\)\nQ.1. (B) Convert each of the following to exponential form.\n(i) \\( \\log _{3} 81=4 \\)\n(ii) \\( \\log _{8} 4=\\frac{2}{3} \\)\n(iii) \\( \\log _{2} \\frac{1}{8}=-3 \\)\n(iv) \\( \\log _{10}(0.01)=-2 \\)\n(v) \\( \\log _{5}\\left(\\frac{1}{5}\\right)=-1 \\) (vi) \\( \\log _{a} 1=0 \\)\nAns.\n(i) \\( \\log _{3} 81=4 \\quad \\therefore 3^{4}=81 \\)\n(ii) \\( \\log _{8} 4=\\frac{2}{3} \\quad \\therefore 8^{\\frac{2}{3}}=4 \\)\n(iii) \\( \\log _{2} \\frac{1}{8}=-3 \\quad \\therefore \\quad 2^{-3}=\\frac{1}{8} \\)\n(iv) \\( \\log _{10}(0.01)=-2 \\quad \\therefore \\quad 10^{-2}=0.01 \\)\n(v) \\( \\log _{5}\\left(\\frac{1}{5}\\right)=-1 \\quad \\therefore \\quad 5^{-1}=\\frac{1}{5} \\)\n(vi) \\( \\log _{a} 1=0 \\)\n\\( \\therefore a^{0}=1 \\)\nMath Class IX\n1\nQuestion Bank'
print(s)
cyA9ICdURVN0bGFiWlxuRURVTEFCWlxuSU5URVJOQVRJT05BTFxuTE9HQVJJVEhNUyBBTkQgSU5ESUNFU1xuXG5RLjEuIChBKSBDb252ZXJ0IGVhY2ggb2YgdGhlIGZvbGxvd2luZyB0byBsb2dhcml0aG1pYyBmb3JtLlxuKGkpIFxcKCA1XnsyfT0yNSBcXClcbihpaSkgXFwoIDNeey0zfT1cXGZyYWN7MX17Mjd9IFxcKVxuKGlpaSkgXFwoICg2NClee1xcZnJhY3sxfXszfX09NCBcXClcbihpdikgXFwoIDZeezB9PTEgXFwpXG4odikgXFwoIDEwXnstMn09MC4wMSBcXCkgKHZpKSBcXCggNF57LTF9PVxcZnJhY3sxfXs0fSBcXClcbkFucy4gV2Uga25vdyB0aGF0IFxcKCBhXntifT14IFxcUmlnaHRhcnJvdyBiPVxcbG9nIF97YX0geCBcXClcbihpKSBcXCggNV57Mn09MjUgXFxxdWFkIFxcdGhlcmVmb3JlIFxcbG9nIF97NX0gMjU9MiBcXClcbihpaSkgXFwoIDNeey0zfT1cXGZyYWN7MX17Mjd9IFxcdGhlcmVmb3JlIFxcbG9nIF97M31cXGxlZnQoXFxmcmFjezF9ezI3fVxccmlnaHQpPS0zIFxcKVxuKGlpaSkgXFwoICg2NClee1xcZnJhY3sxfXszfX09NCBcXHRoZXJlZm9yZSBcXGxvZyBfezY0fSA0PVxcZnJhY3sxfXszfSBcXClcbihpdikgXFwoIDZeezB9PTEgXFxxdWFkIFxcdGhlcmVmb3JlIFxcbG9nIF97Nn0gMT0wIFxcKVxuKHYpIFxcKCAxMF57LTJ9PTAuMDEgXFx0aGVyZWZvcmUgXFxsb2cgX3sxMH0oMC4wMSk9LTIgXFwpXG4odmkpIFxcKCA0XnstMX09XFxmcmFjezF9ezR9IFxcdGhlcmVmb3JlIFxcbG9nIF97NH1cXGxlZnQoXFxmcmFjezF9ezR9XFxyaWdodCk9LTEgXFwpXG5RLjEuIChCKSBDb252ZXJ0IGVhY2ggb2YgdGhlIGZvbGxvd2luZyB0byBleHBvbmVudGlhbCBmb3JtLlxuKGkpIFxcKCBcXGxvZyBfezN9IDgxPTQgXFwpXG4oaWkpIFxcKCBcXGxvZyBfezh9IDQ9XFxmcmFjezJ9ezN9IFxcKVxuKGlpaSkgXFwoIFxcbG9nIF97Mn0gXFxmcmFjezF9ezh9PS0zIFxcKVxuKGl2KSBcXCggXFxsb2cgX3sxMH0oMC4wMSk9LTIgXFwpXG4odikgXFwoIFxcbG9nIF97NX1cXGxlZnQoXFxmcmFjezF9ezV9XFxyaWdodCk9LTEgXFwpICh2aSkgXFwoIFxcbG9nIF97YX0gMT0wIFxcKVxuQW5zLlxuKGkpIFxcKCBcXGxvZyBfezN9IDgxPTQgXFxxdWFkIFxcdGhlcmVmb3JlIDNeezR9PTgxIFxcKVxuKGlpKSBcXCggXFxsb2cgX3s4fSA0PVxcZnJhY3syfXszfSBcXHF1YWQgXFx0aGVyZWZvcmUgOF57XFxmcmFjezJ9ezN9fT00IFxcKVxuKGlpaSkgXFwoIFxcbG9nIF97Mn0gXFxmcmFjezF9ezh9PS0zIFxccXVhZCBcXHRoZXJlZm9yZSBcXHF1YWQgMl57LTN9PVxcZnJhY3sxfXs4fSBcXClcbihpdikgXFwoIFxcbG9nIF97MTB9KDAuMDEpPS0yIFxccXVhZCBcXHRoZXJlZm9yZSBcXHF1YWQgMTBeey0yfT0wLjAxIFxcKVxuKHYpIFxcKCBcXGxvZyBfezV9XFxsZWZ0KFxcZnJhY3sxfXs1fVxccmlnaHQpPS0xIFxccXVhZCBcXHRoZXJlZm9yZSBcXHF1YWQgNV57LTF9PVxcZnJhY3sxfXs1fSBcXClcbih2aSkgXFwoIFxcbG9nIF97YX0gMT0wIFxcKVxuXFwoIFxcdGhlcmVmb3JlIGFeezB9PTEgXFwpXG5NYXRoIENsYXNzIElYXG4xXG5RdWVzdGlvbiBCYW5rJwpwcmludChzKQo=