fork download
  1. import numpy as np
  2. from itertools import product # To generate all binary combinations
  3.  
  4. # Initialisierung der Schwellenwerte
  5. lower_threshold = 0.8
  6. upper_threshold = 1.2
  7.  
  8. # Lernrate
  9. learning_rate = 0.1
  10.  
  11. # Trainingsdaten (Inputs für das XOR-Problem und andere)
  12. inputs = [[0, 0], [0, 1], [1, 0], [1, 1]]
  13.  
  14. # Alle möglichen Zieltabellen (16 Kombinationen)
  15. all_possible_targets = list(product([0, 1], repeat=4))
  16.  
  17. # Trainingsloop für jede mögliche Zieltabelle
  18. for table_index, targets in enumerate(all_possible_targets, start=1):
  19. print(f"\n=== Wahrheitstabelle {table_index}: Targets = {targets} ===")
  20.  
  21. # Initialisieren der Startwerte
  22. max_iterations = 500 # Maximal 500 Iterationen für jedes Bias
  23. epoch = 0
  24. network_trained = False
  25. start_weights = None
  26. final_weights = None
  27. bias = 0.0 # Initial Bias ist 0.0
  28. bias_increment = 0.1 # Bias-Inkrement
  29. max_bias = 0.9 # Maximaler Bias (0.9)
  30. min_bias = -0.9 # Minimaler Bias (-0.9)
  31. reset_count = 0 # Counter to track the number of weight resets
  32.  
  33. # Erste Trainingsrunde ohne Bias-Erhöhung
  34. while epoch < max_iterations and reset_count < 5:
  35. epoch += 1
  36. all_correct = True # Flag, um zu überprüfen, ob alle Ausgaben korrekt sind
  37. current_weights = np.random.uniform(-2, 2, 2) # Zufällige Startgewichte im Bereich [-2, 2]
  38.  
  39. if epoch == 1: # Die erste Iteration nach Initialisierung
  40. start_weights = current_weights # Speichere die Startgewichte
  41.  
  42. for input_vector, target in zip(inputs, targets):
  43. # Berechnung der gewichteten Summe inkl. Bias
  44. weighted_sum = np.dot(input_vector, current_weights) + bias
  45.  
  46. # Aktivierungsfunktion (Schwellenwertfunktion mit zwei Schwellenwerten)
  47. output = 1 if lower_threshold < weighted_sum < upper_threshold else 0
  48.  
  49. # Fehlerberechnung
  50. error = target - output
  51.  
  52. # Wenn ein Fehler vorliegt, dann weise die Gewichte an
  53. if error != 0:
  54. all_correct = False
  55. current_weights += learning_rate * error * np.array(input_vector)
  56.  
  57. # Überprüfe, ob alle Ausgaben korrekt sind
  58. if all_correct:
  59. network_trained = True
  60. final_weights = current_weights # Speichere die finalen Gewichte
  61. break # Stoppe, wenn alle Ausgaben korrekt sind
  62.  
  63. if not network_trained:
  64. print(f"Epoch {epoch} konnte die Tabelle nicht korrekt lernen.")
  65. print(f"Versuche, die Gewichte nach {epoch} Iterationen zurückzusetzen.")
  66. reset_count += 1 # Zähle die Versuche
  67. print(f"Anzahl der Versuche: {reset_count}")
  68.  
  69. if reset_count < 5:
  70. continue # Versuche erneut mit neuen zufälligen Gewichten
  71.  
  72. if network_trained:
  73. print(f"Das Netzwerk hat Wahrheitstabelle {table_index} erfolgreich nach {epoch} Iterationen gelernt.")
  74. print(f"Startgewichte: {start_weights}")
  75. print(f"Endgewichte: {final_weights}")
  76. print(f"Endgültiger Bias: {bias}")
  77. continue # Zum nächsten Wahrheitstabelle
  78.  
  79. # Wenn das Netzwerk nach 500 Iterationen nicht gelernt hat, füge den Bias hinzu
  80. print(f"Das Netzwerk hat Wahrheitstabelle {table_index} nach {epoch} Iterationen nicht korrekt gelernt.")
  81. print("Erhöhe den Bias und versuche es erneut.")
  82.  
  83. # Bias erhöhen in Schritten bis max_bias und dann bis min_bias
  84. bias = 0.0
  85. for bias in np.arange(0.1, max_bias + bias_increment, bias_increment): # Bias von 0.1 bis 0.9
  86. print(f"Versuch mit Bias {bias}:")
  87. epoch = 0
  88. start_weights = np.random.uniform(-2, 2, 2) # Zufällige Startgewichte für die erneute Trainingsrunde
  89. network_trained = False # Netzwerk muss erneut trainiert werden
  90.  
  91. while epoch < max_iterations:
  92. epoch += 1
  93. all_correct = True
  94. current_weights = np.random.uniform(-2, 2, 2) # Zufällige Startgewichte im Bereich [-2, 2]
  95.  
  96. for input_vector, target in zip(inputs, targets):
  97. # Berechnung der gewichteten Summe inkl. Bias
  98. weighted_sum = np.dot(input_vector, current_weights) + bias
  99.  
  100. # Aktivierungsfunktion (Schwellenwertfunktion mit zwei Schwellenwerten)
  101. output = 1 if lower_threshold < weighted_sum < upper_threshold else 0
  102.  
  103. # Fehlerberechnung
  104. error = target - output
  105.  
  106. # Wenn ein Fehler vorliegt, dann weise die Gewichte an
  107. if error != 0:
  108. all_correct = False
  109. current_weights += learning_rate * error * np.array(input_vector)
  110.  
  111. # Überprüfe, ob alle Ausgaben korrekt sind
  112. if all_correct:
  113. network_trained = True
  114. final_weights = current_weights # Speichere die finalen Gewichte
  115. break # Stoppe, wenn alle Ausgaben korrekt sind
  116.  
  117. if network_trained:
  118. break # Das Netzwerk hat jetzt gelernt
  119.  
  120. # Bias verringern und erneut testen, wenn das Netzwerk nicht erfolgreich war
  121. if not network_trained:
  122. print("Erhöhe den Bias bis zum maximalen Wert und versuche es dann mit abnehmendem Bias.")
  123. for bias in np.arange(max_bias, min_bias - bias_increment, -bias_increment): # Bias von 0.9 bis -0.9
  124. print(f"Versuch mit Bias {bias}:")
  125. epoch = 0
  126. start_weights = np.random.uniform(-2, 2, 2) # Zufällige Startgewichte für die erneute Trainingsrunde
  127. network_trained = False # Netzwerk muss erneut trainiert werden
  128.  
  129. while epoch < max_iterations:
  130. epoch += 1
  131. all_correct = True
  132. current_weights = np.random.uniform(-2, 2, 2) # Zufällige Startgewichte im Bereich [-2, 2]
  133.  
  134. for input_vector, target in zip(inputs, targets):
  135. # Berechnung der gewichteten Summe inkl. Bias
  136. weighted_sum = np.dot(input_vector, current_weights) + bias
  137.  
  138. # Aktivierungsfunktion (Schwellenwertfunktion mit zwei Schwellenwerten)
  139. output = 1 if lower_threshold < weighted_sum < upper_threshold else 0
  140.  
  141. # Fehlerberechnung
  142. error = target - output
  143.  
  144. # Wenn ein Fehler vorliegt, dann weise die Gewichte an
  145. if error != 0:
  146. all_correct = False
  147. current_weights += learning_rate * error * np.array(input_vector)
  148.  
  149. # Überprüfe, ob alle Ausgaben korrekt sind
  150. if all_correct:
  151. network_trained = True
  152. final_weights = current_weights # Speichere die finalen Gewichte
  153. break # Stoppe, wenn alle Ausgaben korrekt sind
  154.  
  155. if network_trained:
  156. break # Das Netzwerk hat jetzt gelernt
  157.  
  158. # Ausgabe der Ergebnisse nach der Anpassung des Bias
  159. print(f"Total Iterationen: {epoch}")
  160. print(f"Startgewichte: {start_weights}")
  161. print(f"Endgewichte: {final_weights}")
  162. print(f"Endgültiger Bias: {bias}")
  163.  
  164. # Prüfen, ob das Netzwerk die Tabelle erfolgreich gelernt hat
  165. if network_trained:
  166. print(f"\nDas Netzwerk hat Wahrheitstabelle {table_index} erfolgreich gelernt!")
  167. print(f"Startgewichte: {start_weights}")
  168. print(f"Endgewichte: {final_weights}")
  169. print(f"Endgültiger Bias: {bias}")
  170.  
  171.  
  172.  
Success #stdin #stdout 2.1s 28884KB
stdin
Standard input is empty
stdout
=== Wahrheitstabelle 1: Targets = (0, 0, 0, 0) ===
Das Netzwerk hat Wahrheitstabelle 1 erfolgreich nach 1 Iterationen gelernt.
Startgewichte: [0.0535745  1.42762914]
Endgewichte: [0.0535745  1.42762914]
Endgültiger Bias: 0.0

=== Wahrheitstabelle 2: Targets = (0, 0, 0, 1) ===
Epoch 1 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 1 Iterationen zurückzusetzen.
Anzahl der Versuche: 1
Epoch 2 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 2 Iterationen zurückzusetzen.
Anzahl der Versuche: 2
Epoch 3 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 3 Iterationen zurückzusetzen.
Anzahl der Versuche: 3
Epoch 4 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 4 Iterationen zurückzusetzen.
Anzahl der Versuche: 4
Epoch 5 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 5 Iterationen zurückzusetzen.
Anzahl der Versuche: 5
Das Netzwerk hat Wahrheitstabelle 2 nach 5 Iterationen nicht korrekt gelernt.
Erhöhe den Bias und versuche es erneut.
Versuch mit Bias 0.1:
Total Iterationen: 4
Startgewichte: [-1.32193551  1.63048228]
Endgewichte: [ 1.38949228 -0.65100127]
Endgültiger Bias: 0.1

Das Netzwerk hat Wahrheitstabelle 2 erfolgreich gelernt!
Startgewichte: [-1.32193551  1.63048228]
Endgewichte: [ 1.38949228 -0.65100127]
Endgültiger Bias: 0.1

=== Wahrheitstabelle 3: Targets = (0, 0, 1, 0) ===
Epoch 1 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 1 Iterationen zurückzusetzen.
Anzahl der Versuche: 1
Epoch 2 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 2 Iterationen zurückzusetzen.
Anzahl der Versuche: 2
Epoch 3 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 3 Iterationen zurückzusetzen.
Anzahl der Versuche: 3
Epoch 4 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 4 Iterationen zurückzusetzen.
Anzahl der Versuche: 4
Epoch 5 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 5 Iterationen zurückzusetzen.
Anzahl der Versuche: 5
Das Netzwerk hat Wahrheitstabelle 3 nach 5 Iterationen nicht korrekt gelernt.
Erhöhe den Bias und versuche es erneut.
Versuch mit Bias 0.1:
Total Iterationen: 4
Startgewichte: [ 0.53960507 -1.66988801]
Endgewichte: [ 0.93019128 -1.25618558]
Endgültiger Bias: 0.1

Das Netzwerk hat Wahrheitstabelle 3 erfolgreich gelernt!
Startgewichte: [ 0.53960507 -1.66988801]
Endgewichte: [ 0.93019128 -1.25618558]
Endgültiger Bias: 0.1

=== Wahrheitstabelle 4: Targets = (0, 0, 1, 1) ===
Epoch 1 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 1 Iterationen zurückzusetzen.
Anzahl der Versuche: 1
Epoch 2 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 2 Iterationen zurückzusetzen.
Anzahl der Versuche: 2
Epoch 3 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 3 Iterationen zurückzusetzen.
Anzahl der Versuche: 3
Epoch 4 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 4 Iterationen zurückzusetzen.
Anzahl der Versuche: 4
Epoch 5 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 5 Iterationen zurückzusetzen.
Anzahl der Versuche: 5
Das Netzwerk hat Wahrheitstabelle 4 nach 5 Iterationen nicht korrekt gelernt.
Erhöhe den Bias und versuche es erneut.
Versuch mit Bias 0.1:
Total Iterationen: 81
Startgewichte: [1.44069448 1.48498347]
Endgewichte: [0.81924093 0.05132809]
Endgültiger Bias: 0.1

Das Netzwerk hat Wahrheitstabelle 4 erfolgreich gelernt!
Startgewichte: [1.44069448 1.48498347]
Endgewichte: [0.81924093 0.05132809]
Endgültiger Bias: 0.1

=== Wahrheitstabelle 5: Targets = (0, 1, 0, 0) ===
Epoch 1 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 1 Iterationen zurückzusetzen.
Anzahl der Versuche: 1
Epoch 2 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 2 Iterationen zurückzusetzen.
Anzahl der Versuche: 2
Epoch 3 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 3 Iterationen zurückzusetzen.
Anzahl der Versuche: 3
Epoch 4 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 4 Iterationen zurückzusetzen.
Anzahl der Versuche: 4
Epoch 5 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 5 Iterationen zurückzusetzen.
Anzahl der Versuche: 5
Das Netzwerk hat Wahrheitstabelle 5 nach 5 Iterationen nicht korrekt gelernt.
Erhöhe den Bias und versuche es erneut.
Versuch mit Bias 0.1:
Total Iterationen: 11
Startgewichte: [ 0.39883334 -1.29556919]
Endgewichte: [-0.31624141  0.92583092]
Endgültiger Bias: 0.1

Das Netzwerk hat Wahrheitstabelle 5 erfolgreich gelernt!
Startgewichte: [ 0.39883334 -1.29556919]
Endgewichte: [-0.31624141  0.92583092]
Endgültiger Bias: 0.1

=== Wahrheitstabelle 6: Targets = (0, 1, 0, 1) ===
Epoch 1 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 1 Iterationen zurückzusetzen.
Anzahl der Versuche: 1
Epoch 2 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 2 Iterationen zurückzusetzen.
Anzahl der Versuche: 2
Epoch 3 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 3 Iterationen zurückzusetzen.
Anzahl der Versuche: 3
Epoch 4 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 4 Iterationen zurückzusetzen.
Anzahl der Versuche: 4
Epoch 5 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 5 Iterationen zurückzusetzen.
Anzahl der Versuche: 5
Das Netzwerk hat Wahrheitstabelle 6 nach 5 Iterationen nicht korrekt gelernt.
Erhöhe den Bias und versuche es erneut.
Versuch mit Bias 0.1:
Total Iterationen: 18
Startgewichte: [-0.7511899 -0.5260866]
Endgewichte: [-0.07741088  0.91953024]
Endgültiger Bias: 0.1

Das Netzwerk hat Wahrheitstabelle 6 erfolgreich gelernt!
Startgewichte: [-0.7511899 -0.5260866]
Endgewichte: [-0.07741088  0.91953024]
Endgültiger Bias: 0.1

=== Wahrheitstabelle 7: Targets = (0, 1, 1, 0) ===
Epoch 1 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 1 Iterationen zurückzusetzen.
Anzahl der Versuche: 1
Epoch 2 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 2 Iterationen zurückzusetzen.
Anzahl der Versuche: 2
Epoch 3 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 3 Iterationen zurückzusetzen.
Anzahl der Versuche: 3
Epoch 4 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 4 Iterationen zurückzusetzen.
Anzahl der Versuche: 4
Epoch 5 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 5 Iterationen zurückzusetzen.
Anzahl der Versuche: 5
Das Netzwerk hat Wahrheitstabelle 7 nach 5 Iterationen nicht korrekt gelernt.
Erhöhe den Bias und versuche es erneut.
Versuch mit Bias 0.1:
Total Iterationen: 161
Startgewichte: [0.85064742 1.99200447]
Endgewichte: [0.91456438 0.71916731]
Endgültiger Bias: 0.1

Das Netzwerk hat Wahrheitstabelle 7 erfolgreich gelernt!
Startgewichte: [0.85064742 1.99200447]
Endgewichte: [0.91456438 0.71916731]
Endgültiger Bias: 0.1

=== Wahrheitstabelle 8: Targets = (0, 1, 1, 1) ===
Epoch 1 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 1 Iterationen zurückzusetzen.
Anzahl der Versuche: 1
Epoch 2 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 2 Iterationen zurückzusetzen.
Anzahl der Versuche: 2
Epoch 3 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 3 Iterationen zurückzusetzen.
Anzahl der Versuche: 3
Epoch 4 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 4 Iterationen zurückzusetzen.
Anzahl der Versuche: 4
Epoch 5 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 5 Iterationen zurückzusetzen.
Anzahl der Versuche: 5
Das Netzwerk hat Wahrheitstabelle 8 nach 5 Iterationen nicht korrekt gelernt.
Erhöhe den Bias und versuche es erneut.
Versuch mit Bias 0.1:
Versuch mit Bias 0.2:
Versuch mit Bias 0.30000000000000004:
Versuch mit Bias 0.4:
Versuch mit Bias 0.5:
Total Iterationen: 185
Startgewichte: [-0.67292192  0.72557168]
Endgewichte: [0.37743109 0.3209343 ]
Endgültiger Bias: 0.5

Das Netzwerk hat Wahrheitstabelle 8 erfolgreich gelernt!
Startgewichte: [-0.67292192  0.72557168]
Endgewichte: [0.37743109 0.3209343 ]
Endgültiger Bias: 0.5

=== Wahrheitstabelle 9: Targets = (1, 0, 0, 0) ===
Epoch 1 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 1 Iterationen zurückzusetzen.
Anzahl der Versuche: 1
Epoch 2 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 2 Iterationen zurückzusetzen.
Anzahl der Versuche: 2
Epoch 3 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 3 Iterationen zurückzusetzen.
Anzahl der Versuche: 3
Epoch 4 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 4 Iterationen zurückzusetzen.
Anzahl der Versuche: 4
Epoch 5 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 5 Iterationen zurückzusetzen.
Anzahl der Versuche: 5
Das Netzwerk hat Wahrheitstabelle 9 nach 5 Iterationen nicht korrekt gelernt.
Erhöhe den Bias und versuche es erneut.
Versuch mit Bias 0.1:
Versuch mit Bias 0.2:
Versuch mit Bias 0.30000000000000004:
Versuch mit Bias 0.4:
Versuch mit Bias 0.5:
Versuch mit Bias 0.6:
Versuch mit Bias 0.7000000000000001:
Versuch mit Bias 0.8:
Versuch mit Bias 0.9:
Total Iterationen: 1
Startgewichte: [-0.60826952 -0.9943093 ]
Endgewichte: [ 1.82019757 -1.2624325 ]
Endgültiger Bias: 0.9

Das Netzwerk hat Wahrheitstabelle 9 erfolgreich gelernt!
Startgewichte: [-0.60826952 -0.9943093 ]
Endgewichte: [ 1.82019757 -1.2624325 ]
Endgültiger Bias: 0.9

=== Wahrheitstabelle 10: Targets = (1, 0, 0, 1) ===
Epoch 1 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 1 Iterationen zurückzusetzen.
Anzahl der Versuche: 1
Epoch 2 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 2 Iterationen zurückzusetzen.
Anzahl der Versuche: 2
Epoch 3 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 3 Iterationen zurückzusetzen.
Anzahl der Versuche: 3
Epoch 4 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 4 Iterationen zurückzusetzen.
Anzahl der Versuche: 4
Epoch 5 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 5 Iterationen zurückzusetzen.
Anzahl der Versuche: 5
Das Netzwerk hat Wahrheitstabelle 10 nach 5 Iterationen nicht korrekt gelernt.
Erhöhe den Bias und versuche es erneut.
Versuch mit Bias 0.1:
Versuch mit Bias 0.2:
Versuch mit Bias 0.30000000000000004:
Versuch mit Bias 0.4:
Versuch mit Bias 0.5:
Versuch mit Bias 0.6:
Versuch mit Bias 0.7000000000000001:
Versuch mit Bias 0.8:
Versuch mit Bias 0.9:
Total Iterationen: 5
Startgewichte: [0.07365192 1.71194834]
Endgewichte: [ 0.90778627 -0.73874219]
Endgültiger Bias: 0.9

Das Netzwerk hat Wahrheitstabelle 10 erfolgreich gelernt!
Startgewichte: [0.07365192 1.71194834]
Endgewichte: [ 0.90778627 -0.73874219]
Endgültiger Bias: 0.9

=== Wahrheitstabelle 11: Targets = (1, 0, 1, 0) ===
Epoch 1 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 1 Iterationen zurückzusetzen.
Anzahl der Versuche: 1
Epoch 2 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 2 Iterationen zurückzusetzen.
Anzahl der Versuche: 2
Epoch 3 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 3 Iterationen zurückzusetzen.
Anzahl der Versuche: 3
Epoch 4 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 4 Iterationen zurückzusetzen.
Anzahl der Versuche: 4
Epoch 5 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 5 Iterationen zurückzusetzen.
Anzahl der Versuche: 5
Das Netzwerk hat Wahrheitstabelle 11 nach 5 Iterationen nicht korrekt gelernt.
Erhöhe den Bias und versuche es erneut.
Versuch mit Bias 0.1:
Versuch mit Bias 0.2:
Versuch mit Bias 0.30000000000000004:
Versuch mit Bias 0.4:
Versuch mit Bias 0.5:
Versuch mit Bias 0.6:
Versuch mit Bias 0.7000000000000001:
Versuch mit Bias 0.8:
Versuch mit Bias 0.9:
Total Iterationen: 14
Startgewichte: [ 0.51847568 -0.90045559]
Endgewichte: [ 0.06641441 -0.82250939]
Endgültiger Bias: 0.9

Das Netzwerk hat Wahrheitstabelle 11 erfolgreich gelernt!
Startgewichte: [ 0.51847568 -0.90045559]
Endgewichte: [ 0.06641441 -0.82250939]
Endgültiger Bias: 0.9

=== Wahrheitstabelle 12: Targets = (1, 0, 1, 1) ===
Epoch 1 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 1 Iterationen zurückzusetzen.
Anzahl der Versuche: 1
Epoch 2 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 2 Iterationen zurückzusetzen.
Anzahl der Versuche: 2
Epoch 3 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 3 Iterationen zurückzusetzen.
Anzahl der Versuche: 3
Epoch 4 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 4 Iterationen zurückzusetzen.
Anzahl der Versuche: 4
Epoch 5 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 5 Iterationen zurückzusetzen.
Anzahl der Versuche: 5
Das Netzwerk hat Wahrheitstabelle 12 nach 5 Iterationen nicht korrekt gelernt.
Erhöhe den Bias und versuche es erneut.
Versuch mit Bias 0.1:
Versuch mit Bias 0.2:
Versuch mit Bias 0.30000000000000004:
Versuch mit Bias 0.4:
Versuch mit Bias 0.5:
Versuch mit Bias 0.6:
Versuch mit Bias 0.7000000000000001:
Versuch mit Bias 0.8:
Versuch mit Bias 0.9:
Total Iterationen: 272
Startgewichte: [0.71485775 0.48097778]
Endgewichte: [ 0.29760312 -0.12816863]
Endgültiger Bias: 0.9

Das Netzwerk hat Wahrheitstabelle 12 erfolgreich gelernt!
Startgewichte: [0.71485775 0.48097778]
Endgewichte: [ 0.29760312 -0.12816863]
Endgültiger Bias: 0.9

=== Wahrheitstabelle 13: Targets = (1, 1, 0, 0) ===
Epoch 1 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 1 Iterationen zurückzusetzen.
Anzahl der Versuche: 1
Epoch 2 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 2 Iterationen zurückzusetzen.
Anzahl der Versuche: 2
Epoch 3 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 3 Iterationen zurückzusetzen.
Anzahl der Versuche: 3
Epoch 4 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 4 Iterationen zurückzusetzen.
Anzahl der Versuche: 4
Epoch 5 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 5 Iterationen zurückzusetzen.
Anzahl der Versuche: 5
Das Netzwerk hat Wahrheitstabelle 13 nach 5 Iterationen nicht korrekt gelernt.
Erhöhe den Bias und versuche es erneut.
Versuch mit Bias 0.1:
Versuch mit Bias 0.2:
Versuch mit Bias 0.30000000000000004:
Versuch mit Bias 0.4:
Versuch mit Bias 0.5:
Versuch mit Bias 0.6:
Versuch mit Bias 0.7000000000000001:
Versuch mit Bias 0.8:
Versuch mit Bias 0.9:
Total Iterationen: 7
Startgewichte: [1.40792096 1.1684254 ]
Endgewichte: [-1.56942877  0.08929668]
Endgültiger Bias: 0.9

Das Netzwerk hat Wahrheitstabelle 13 erfolgreich gelernt!
Startgewichte: [1.40792096 1.1684254 ]
Endgewichte: [-1.56942877  0.08929668]
Endgültiger Bias: 0.9

=== Wahrheitstabelle 14: Targets = (1, 1, 0, 1) ===
Epoch 1 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 1 Iterationen zurückzusetzen.
Anzahl der Versuche: 1
Epoch 2 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 2 Iterationen zurückzusetzen.
Anzahl der Versuche: 2
Epoch 3 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 3 Iterationen zurückzusetzen.
Anzahl der Versuche: 3
Epoch 4 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 4 Iterationen zurückzusetzen.
Anzahl der Versuche: 4
Epoch 5 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 5 Iterationen zurückzusetzen.
Anzahl der Versuche: 5
Das Netzwerk hat Wahrheitstabelle 14 nach 5 Iterationen nicht korrekt gelernt.
Erhöhe den Bias und versuche es erneut.
Versuch mit Bias 0.1:
Versuch mit Bias 0.2:
Versuch mit Bias 0.30000000000000004:
Versuch mit Bias 0.4:
Versuch mit Bias 0.5:
Versuch mit Bias 0.6:
Versuch mit Bias 0.7000000000000001:
Versuch mit Bias 0.8:
Versuch mit Bias 0.9:
Erhöhe den Bias bis zum maximalen Wert und versuche es dann mit abnehmendem Bias.
Versuch mit Bias 0.9:
Total Iterationen: 13
Startgewichte: [1.47629391 0.30767092]
Endgewichte: [-0.14430714  0.22889213]
Endgültiger Bias: 0.9

Das Netzwerk hat Wahrheitstabelle 14 erfolgreich gelernt!
Startgewichte: [1.47629391 0.30767092]
Endgewichte: [-0.14430714  0.22889213]
Endgültiger Bias: 0.9

=== Wahrheitstabelle 15: Targets = (1, 1, 1, 0) ===
Epoch 1 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 1 Iterationen zurückzusetzen.
Anzahl der Versuche: 1
Epoch 2 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 2 Iterationen zurückzusetzen.
Anzahl der Versuche: 2
Epoch 3 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 3 Iterationen zurückzusetzen.
Anzahl der Versuche: 3
Epoch 4 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 4 Iterationen zurückzusetzen.
Anzahl der Versuche: 4
Epoch 5 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 5 Iterationen zurückzusetzen.
Anzahl der Versuche: 5
Das Netzwerk hat Wahrheitstabelle 15 nach 5 Iterationen nicht korrekt gelernt.
Erhöhe den Bias und versuche es erneut.
Versuch mit Bias 0.1:
Versuch mit Bias 0.2:
Versuch mit Bias 0.30000000000000004:
Versuch mit Bias 0.4:
Versuch mit Bias 0.5:
Versuch mit Bias 0.6:
Versuch mit Bias 0.7000000000000001:
Versuch mit Bias 0.8:
Versuch mit Bias 0.9:
Total Iterationen: 296
Startgewichte: [1.62654744 0.08234753]
Endgewichte: [0.27891059 0.23178547]
Endgültiger Bias: 0.9

Das Netzwerk hat Wahrheitstabelle 15 erfolgreich gelernt!
Startgewichte: [1.62654744 0.08234753]
Endgewichte: [0.27891059 0.23178547]
Endgültiger Bias: 0.9

=== Wahrheitstabelle 16: Targets = (1, 1, 1, 1) ===
Epoch 1 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 1 Iterationen zurückzusetzen.
Anzahl der Versuche: 1
Epoch 2 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 2 Iterationen zurückzusetzen.
Anzahl der Versuche: 2
Epoch 3 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 3 Iterationen zurückzusetzen.
Anzahl der Versuche: 3
Epoch 4 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 4 Iterationen zurückzusetzen.
Anzahl der Versuche: 4
Epoch 5 konnte die Tabelle nicht korrekt lernen.
Versuche, die Gewichte nach 5 Iterationen zurückzusetzen.
Anzahl der Versuche: 5
Das Netzwerk hat Wahrheitstabelle 16 nach 5 Iterationen nicht korrekt gelernt.
Erhöhe den Bias und versuche es erneut.
Versuch mit Bias 0.1:
Versuch mit Bias 0.2:
Versuch mit Bias 0.30000000000000004:
Versuch mit Bias 0.4:
Versuch mit Bias 0.5:
Versuch mit Bias 0.6:
Versuch mit Bias 0.7000000000000001:
Versuch mit Bias 0.8:
Versuch mit Bias 0.9:
Total Iterationen: 80
Startgewichte: [ 1.31287037 -0.27405296]
Endgewichte: [0.01129381 0.06343871]
Endgültiger Bias: 0.9

Das Netzwerk hat Wahrheitstabelle 16 erfolgreich gelernt!
Startgewichte: [ 1.31287037 -0.27405296]
Endgewichte: [0.01129381 0.06343871]
Endgültiger Bias: 0.9