import numpy as np from itertools import product # To generate all binary combinations # Initialisierung der Schwellenwerte lower_threshold = 0.8 upper_threshold = 1.2 # Lernrate learning_rate = 0.1 # Trainingsdaten (Inputs für das XOR-Problem und andere) inputs = [[0, 0], [0, 1], [1, 0], [1, 1]] # Alle möglichen Zieltabellen (16 Kombinationen) all_possible_targets = list(product([0, 1], repeat=4)) # Trainingsloop für jede mögliche Zieltabelle for table_index, targets in enumerate(all_possible_targets, start=1): print(f"\n=== Wahrheitstabelle {table_index}: Targets = {targets} ===") # Initialisieren der Startwerte max_iterations = 500 # Maximal 500 Iterationen für jedes Bias (updated from 200 to 500) epoch = 0 network_trained = False start_weights = None final_weights = None bias = 0.0 # Initial Bias ist 0.0 bias_increment = 0.1 # Bias-Inkrement max_bias = 1.3 # Maximaler Bias min_bias = -1.3 # Minimaler Bias reset_count = 0 # Counter to track the number of weight resets # Erste Trainingsrunde ohne Bias-Erhöhung while epoch < max_iterations and reset_count < 5: epoch += 1 all_correct = True # Flag, um zu überprüfen, ob alle Ausgaben korrekt sind current_weights = np.random.uniform(-4, 4, 2) # Zufällige Startgewichte im Bereich [-4, 4] if epoch == 1: # Die erste Iteration nach Initialisierung start_weights = current_weights # Speichere die Startgewichte for input_vector, target in zip(inputs, targets): # Berechnung der gewichteten Summe inkl. Bias weighted_sum = np.dot(input_vector, current_weights) + bias # Aktivierungsfunktion (Schwellenwertfunktion mit zwei Schwellenwerten) output = 1 if lower_threshold < weighted_sum < upper_threshold else 0 # Fehlerberechnung error = target - output # Wenn ein Fehler vorliegt, dann weise die Gewichte an if error != 0: all_correct = False current_weights += learning_rate * error * np.array(input_vector) # Überprüfe, ob alle Ausgaben korrekt sind if all_correct: network_trained = True final_weights = current_weights # Speichere die finalen Gewichte break # Stoppe, wenn alle Ausgaben korrekt sind if not network_trained: print(f"Epoch {epoch} konnte die Tabelle nicht korrekt lernen.") print(f"Versuche, die Gewichte nach {epoch} Iterationen zurückzusetzen.") reset_count += 1 # Zähle die Versuche print(f"Anzahl der Versuche: {reset_count}") if reset_count < 5: continue # Versuche erneut mit neuen zufälligen Gewichten if network_trained: print(f"Das Netzwerk hat Wahrheitstabelle {table_index} erfolgreich nach {epoch} Iterationen gelernt.") print(f"Startgewichte: {start_weights}") print(f"Endgewichte: {final_weights}") print(f"Endgültiger Bias: {bias}") continue # Zum nächsten Wahrheitstabelle # Wenn das Netzwerk nach 500 Iterationen nicht gelernt hat, füge den Bias hinzu print(f"Das Netzwerk hat Wahrheitstabelle {table_index} nach {epoch} Iterationen nicht korrekt gelernt.") print("Erhöhe den Bias und versuche es erneut.") # Bias erhöhen in Schritten bis max_bias und dann bis min_bias bias = 0.0 for bias in np.arange(0.1, max_bias + bias_increment, bias_increment): # Bias von 0.1 bis 1.3 print(f"Versuch mit Bias {bias}:") epoch = 0 start_weights = np.random.uniform(-4, 4, 2) # Zufällige Startgewichte für die erneute Trainingsrunde network_trained = False # Netzwerk muss erneut trainiert werden while epoch < max_iterations: epoch += 1 all_correct = True current_weights = np.random.uniform(-4, 4, 2) # Zufällige Startgewichte im Bereich [-4, 4] for input_vector, target in zip(inputs, targets): # Berechnung der gewichteten Summe inkl. Bias weighted_sum = np.dot(input_vector, current_weights) + bias # Aktivierungsfunktion (Schwellenwertfunktion mit zwei Schwellenwerten) output = 1 if lower_threshold < weighted_sum < upper_threshold else 0 # Fehlerberechnung error = target - output # Wenn ein Fehler vorliegt, dann weise die Gewichte an if error != 0: all_correct = False current_weights += learning_rate * error * np.array(input_vector) # Überprüfe, ob alle Ausgaben korrekt sind if all_correct: network_trained = True final_weights = current_weights # Speichere die finalen Gewichte break # Stoppe, wenn alle Ausgaben korrekt sind if network_trained: break # Das Netzwerk hat jetzt gelernt # Bias verringern und erneut testen, wenn das Netzwerk nicht erfolgreich war if not network_trained: print("Erhöhe den Bias bis zum maximalen Wert und versuche es dann mit abnehmendem Bias.") for bias in np.arange(max_bias, min_bias - bias_increment, -bias_increment): # Bias von 1.3 bis -1.3 print(f"Versuch mit Bias {bias}:") epoch = 0 start_weights = np.random.uniform(-4, 4, 2) # Zufällige Startgewichte für die erneute Trainingsrunde network_trained = False # Netzwerk muss erneut trainiert werden while epoch < max_iterations: epoch += 1 all_correct = True current_weights = np.random.uniform(-4, 4, 2) # Zufällige Startgewichte im Bereich [-4, 4] for input_vector, target in zip(inputs, targets): # Berechnung der gewichteten Summe inkl. Bias weighted_sum = np.dot(input_vector, current_weights) + bias # Aktivierungsfunktion (Schwellenwertfunktion mit zwei Schwellenwerten) output = 1 if lower_threshold < weighted_sum < upper_threshold else 0 # Fehlerberechnung error = target - output # Wenn ein Fehler vorliegt, dann weise die Gewichte an if error != 0: all_correct = False current_weights += learning_rate * error * np.array(input_vector) # Überprüfe, ob alle Ausgaben korrekt sind if all_correct: network_trained = True final_weights = current_weights # Speichere die finalen Gewichte break # Stoppe, wenn alle Ausgaben korrekt sind if network_trained: break # Das Netzwerk hat jetzt gelernt # Ausgabe der Ergebnisse nach der Anpassung des Bias print(f"Total Iterationen: {epoch}") print(f"Startgewichte: {start_weights}") print(f"Endgewichte: {final_weights}") print(f"Endgültiger Bias: {bias}") # Prüfen, ob das Netzwerk die Tabelle erfolgreich gelernt hat if network_trained: print(f"\nDas Netzwerk hat Wahrheitstabelle {table_index} erfolgreich gelernt!") print(f"Startgewichte: {start_weights}") print(f"Endgewichte: {final_weights}") print(f"Endgültiger Bias: {bias}")
Standard input is empty
=== Wahrheitstabelle 1: Targets = (0, 0, 0, 0) === Das Netzwerk hat Wahrheitstabelle 1 erfolgreich nach 1 Iterationen gelernt. Startgewichte: [-0.73421956 1.38736801] Endgewichte: [-0.73421956 1.38736801] Endgültiger Bias: 0.0 === Wahrheitstabelle 2: Targets = (0, 0, 0, 1) === Epoch 1 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 1 Iterationen zurückzusetzen. Anzahl der Versuche: 1 Epoch 2 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 2 Iterationen zurückzusetzen. Anzahl der Versuche: 2 Epoch 3 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 3 Iterationen zurückzusetzen. Anzahl der Versuche: 3 Epoch 4 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 4 Iterationen zurückzusetzen. Anzahl der Versuche: 4 Epoch 5 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 5 Iterationen zurückzusetzen. Anzahl der Versuche: 5 Das Netzwerk hat Wahrheitstabelle 2 nach 5 Iterationen nicht korrekt gelernt. Erhöhe den Bias und versuche es erneut. Versuch mit Bias 0.1: Total Iterationen: 35 Startgewichte: [0.95277061 0.61302352] Endgewichte: [ 1.22243384 -0.34735284] Endgültiger Bias: 0.1 Das Netzwerk hat Wahrheitstabelle 2 erfolgreich gelernt! Startgewichte: [0.95277061 0.61302352] Endgewichte: [ 1.22243384 -0.34735284] Endgültiger Bias: 0.1 === Wahrheitstabelle 3: Targets = (0, 0, 1, 0) === Epoch 1 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 1 Iterationen zurückzusetzen. Anzahl der Versuche: 1 Epoch 2 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 2 Iterationen zurückzusetzen. Anzahl der Versuche: 2 Epoch 3 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 3 Iterationen zurückzusetzen. Anzahl der Versuche: 3 Epoch 4 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 4 Iterationen zurückzusetzen. Anzahl der Versuche: 4 Epoch 5 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 5 Iterationen zurückzusetzen. Anzahl der Versuche: 5 Das Netzwerk hat Wahrheitstabelle 3 nach 5 Iterationen nicht korrekt gelernt. Erhöhe den Bias und versuche es erneut. Versuch mit Bias 0.1: Total Iterationen: 44 Startgewichte: [3.28161421 2.77458958] Endgewichte: [0.99659666 3.42946488] Endgültiger Bias: 0.1 Das Netzwerk hat Wahrheitstabelle 3 erfolgreich gelernt! Startgewichte: [3.28161421 2.77458958] Endgewichte: [0.99659666 3.42946488] Endgültiger Bias: 0.1 === Wahrheitstabelle 4: Targets = (0, 0, 1, 1) === Epoch 1 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 1 Iterationen zurückzusetzen. Anzahl der Versuche: 1 Epoch 2 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 2 Iterationen zurückzusetzen. Anzahl der Versuche: 2 Epoch 3 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 3 Iterationen zurückzusetzen. Anzahl der Versuche: 3 Epoch 4 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 4 Iterationen zurückzusetzen. Anzahl der Versuche: 4 Epoch 5 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 5 Iterationen zurückzusetzen. Anzahl der Versuche: 5 Das Netzwerk hat Wahrheitstabelle 4 nach 5 Iterationen nicht korrekt gelernt. Erhöhe den Bias und versuche es erneut. Versuch mit Bias 0.1: Total Iterationen: 72 Startgewichte: [ 2.48145909 -0.18053392] Endgewichte: [ 1.02715486 -0.0598751 ] Endgültiger Bias: 0.1 Das Netzwerk hat Wahrheitstabelle 4 erfolgreich gelernt! Startgewichte: [ 2.48145909 -0.18053392] Endgewichte: [ 1.02715486 -0.0598751 ] Endgültiger Bias: 0.1 === Wahrheitstabelle 5: Targets = (0, 1, 0, 0) === Epoch 1 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 1 Iterationen zurückzusetzen. Anzahl der Versuche: 1 Epoch 2 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 2 Iterationen zurückzusetzen. Anzahl der Versuche: 2 Epoch 3 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 3 Iterationen zurückzusetzen. Anzahl der Versuche: 3 Epoch 4 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 4 Iterationen zurückzusetzen. Anzahl der Versuche: 4 Epoch 5 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 5 Iterationen zurückzusetzen. Anzahl der Versuche: 5 Das Netzwerk hat Wahrheitstabelle 5 nach 5 Iterationen nicht korrekt gelernt. Erhöhe den Bias und versuche es erneut. Versuch mit Bias 0.1: Total Iterationen: 13 Startgewichte: [2.41873256 1.82323955] Endgewichte: [-2.14970222 0.72950422] Endgültiger Bias: 0.1 Das Netzwerk hat Wahrheitstabelle 5 erfolgreich gelernt! Startgewichte: [2.41873256 1.82323955] Endgewichte: [-2.14970222 0.72950422] Endgültiger Bias: 0.1 === Wahrheitstabelle 6: Targets = (0, 1, 0, 1) === Epoch 1 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 1 Iterationen zurückzusetzen. Anzahl der Versuche: 1 Epoch 2 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 2 Iterationen zurückzusetzen. Anzahl der Versuche: 2 Epoch 3 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 3 Iterationen zurückzusetzen. Anzahl der Versuche: 3 Epoch 4 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 4 Iterationen zurückzusetzen. Anzahl der Versuche: 4 Epoch 5 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 5 Iterationen zurückzusetzen. Anzahl der Versuche: 5 Das Netzwerk hat Wahrheitstabelle 6 nach 5 Iterationen nicht korrekt gelernt. Erhöhe den Bias und versuche es erneut. Versuch mit Bias 0.1: Total Iterationen: 292 Startgewichte: [ 3.05466709 -3.03212512] Endgewichte: [3.96247847e-04 9.97401033e-01] Endgültiger Bias: 0.1 Das Netzwerk hat Wahrheitstabelle 6 erfolgreich gelernt! Startgewichte: [ 3.05466709 -3.03212512] Endgewichte: [3.96247847e-04 9.97401033e-01] Endgültiger Bias: 0.1 === Wahrheitstabelle 7: Targets = (0, 1, 1, 0) === Epoch 1 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 1 Iterationen zurückzusetzen. Anzahl der Versuche: 1 Epoch 2 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 2 Iterationen zurückzusetzen. Anzahl der Versuche: 2 Epoch 3 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 3 Iterationen zurückzusetzen. Anzahl der Versuche: 3 Epoch 4 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 4 Iterationen zurückzusetzen. Anzahl der Versuche: 4 Epoch 5 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 5 Iterationen zurückzusetzen. Anzahl der Versuche: 5 Das Netzwerk hat Wahrheitstabelle 7 nach 5 Iterationen nicht korrekt gelernt. Erhöhe den Bias und versuche es erneut. Versuch mit Bias 0.1: Total Iterationen: 184 Startgewichte: [-0.78032134 0.9444021 ] Endgewichte: [1.08738638 0.70395831] Endgültiger Bias: 0.1 Das Netzwerk hat Wahrheitstabelle 7 erfolgreich gelernt! Startgewichte: [-0.78032134 0.9444021 ] Endgewichte: [1.08738638 0.70395831] Endgültiger Bias: 0.1 === Wahrheitstabelle 8: Targets = (0, 1, 1, 1) === Epoch 1 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 1 Iterationen zurückzusetzen. Anzahl der Versuche: 1 Epoch 2 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 2 Iterationen zurückzusetzen. Anzahl der Versuche: 2 Epoch 3 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 3 Iterationen zurückzusetzen. Anzahl der Versuche: 3 Epoch 4 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 4 Iterationen zurückzusetzen. Anzahl der Versuche: 4 Epoch 5 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 5 Iterationen zurückzusetzen. Anzahl der Versuche: 5 Das Netzwerk hat Wahrheitstabelle 8 nach 5 Iterationen nicht korrekt gelernt. Erhöhe den Bias und versuche es erneut. Versuch mit Bias 0.1: Versuch mit Bias 0.2: Versuch mit Bias 0.30000000000000004: Versuch mit Bias 0.4: Versuch mit Bias 0.5: Versuch mit Bias 0.6: Versuch mit Bias 0.7000000000000001: Versuch mit Bias 0.8: Total Iterationen: 346 Startgewichte: [-0.9569737 -1.62206945] Endgewichte: [0.01233383 0.05241132] Endgültiger Bias: 0.8 Das Netzwerk hat Wahrheitstabelle 8 erfolgreich gelernt! Startgewichte: [-0.9569737 -1.62206945] Endgewichte: [0.01233383 0.05241132] Endgültiger Bias: 0.8 === Wahrheitstabelle 9: Targets = (1, 0, 0, 0) === Epoch 1 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 1 Iterationen zurückzusetzen. Anzahl der Versuche: 1 Epoch 2 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 2 Iterationen zurückzusetzen. Anzahl der Versuche: 2 Epoch 3 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 3 Iterationen zurückzusetzen. Anzahl der Versuche: 3 Epoch 4 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 4 Iterationen zurückzusetzen. Anzahl der Versuche: 4 Epoch 5 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 5 Iterationen zurückzusetzen. Anzahl der Versuche: 5 Das Netzwerk hat Wahrheitstabelle 9 nach 5 Iterationen nicht korrekt gelernt. Erhöhe den Bias und versuche es erneut. Versuch mit Bias 0.1: Versuch mit Bias 0.2: Versuch mit Bias 0.30000000000000004: Versuch mit Bias 0.4: Versuch mit Bias 0.5: Versuch mit Bias 0.6: Versuch mit Bias 0.7000000000000001: Versuch mit Bias 0.8: Versuch mit Bias 0.9: Total Iterationen: 1 Startgewichte: [-1.64065106 3.35050252] Endgewichte: [2.16877799 3.18314752] Endgültiger Bias: 0.9 Das Netzwerk hat Wahrheitstabelle 9 erfolgreich gelernt! Startgewichte: [-1.64065106 3.35050252] Endgewichte: [2.16877799 3.18314752] Endgültiger Bias: 0.9 === Wahrheitstabelle 10: Targets = (1, 0, 0, 1) === Epoch 1 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 1 Iterationen zurückzusetzen. Anzahl der Versuche: 1 Epoch 2 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 2 Iterationen zurückzusetzen. Anzahl der Versuche: 2 Epoch 3 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 3 Iterationen zurückzusetzen. Anzahl der Versuche: 3 Epoch 4 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 4 Iterationen zurückzusetzen. Anzahl der Versuche: 4 Epoch 5 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 5 Iterationen zurückzusetzen. Anzahl der Versuche: 5 Das Netzwerk hat Wahrheitstabelle 10 nach 5 Iterationen nicht korrekt gelernt. Erhöhe den Bias und versuche es erneut. Versuch mit Bias 0.1: Versuch mit Bias 0.2: Versuch mit Bias 0.30000000000000004: Versuch mit Bias 0.4: Versuch mit Bias 0.5: Versuch mit Bias 0.6: Versuch mit Bias 0.7000000000000001: Versuch mit Bias 0.8: Versuch mit Bias 0.9: Total Iterationen: 10 Startgewichte: [1.70019246 3.09625299] Endgewichte: [-0.14718883 0.44284264] Endgültiger Bias: 0.9 Das Netzwerk hat Wahrheitstabelle 10 erfolgreich gelernt! Startgewichte: [1.70019246 3.09625299] Endgewichte: [-0.14718883 0.44284264] Endgültiger Bias: 0.9 === Wahrheitstabelle 11: Targets = (1, 0, 1, 0) === Epoch 1 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 1 Iterationen zurückzusetzen. Anzahl der Versuche: 1 Epoch 2 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 2 Iterationen zurückzusetzen. Anzahl der Versuche: 2 Epoch 3 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 3 Iterationen zurückzusetzen. Anzahl der Versuche: 3 Epoch 4 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 4 Iterationen zurückzusetzen. Anzahl der Versuche: 4 Epoch 5 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 5 Iterationen zurückzusetzen. Anzahl der Versuche: 5 Das Netzwerk hat Wahrheitstabelle 11 nach 5 Iterationen nicht korrekt gelernt. Erhöhe den Bias und versuche es erneut. Versuch mit Bias 0.1: Versuch mit Bias 0.2: Versuch mit Bias 0.30000000000000004: Versuch mit Bias 0.4: Versuch mit Bias 0.5: Versuch mit Bias 0.6: Versuch mit Bias 0.7000000000000001: Versuch mit Bias 0.8: Versuch mit Bias 0.9: Total Iterationen: 1 Startgewichte: [0.48299832 2.87816622] Endgewichte: [0.04565899 3.8795917 ] Endgültiger Bias: 0.9 Das Netzwerk hat Wahrheitstabelle 11 erfolgreich gelernt! Startgewichte: [0.48299832 2.87816622] Endgewichte: [0.04565899 3.8795917 ] Endgültiger Bias: 0.9 === Wahrheitstabelle 12: Targets = (1, 0, 1, 1) === Epoch 1 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 1 Iterationen zurückzusetzen. Anzahl der Versuche: 1 Epoch 2 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 2 Iterationen zurückzusetzen. Anzahl der Versuche: 2 Epoch 3 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 3 Iterationen zurückzusetzen. Anzahl der Versuche: 3 Epoch 4 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 4 Iterationen zurückzusetzen. Anzahl der Versuche: 4 Epoch 5 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 5 Iterationen zurückzusetzen. Anzahl der Versuche: 5 Das Netzwerk hat Wahrheitstabelle 12 nach 5 Iterationen nicht korrekt gelernt. Erhöhe den Bias und versuche es erneut. Versuch mit Bias 0.1: Versuch mit Bias 0.2: Versuch mit Bias 0.30000000000000004: Versuch mit Bias 0.4: Versuch mit Bias 0.5: Versuch mit Bias 0.6: Versuch mit Bias 0.7000000000000001: Versuch mit Bias 0.8: Versuch mit Bias 0.9: Total Iterationen: 486 Startgewichte: [0.97720223 1.35370373] Endgewichte: [ 0.10053964 -0.18958836] Endgültiger Bias: 0.9 Das Netzwerk hat Wahrheitstabelle 12 erfolgreich gelernt! Startgewichte: [0.97720223 1.35370373] Endgewichte: [ 0.10053964 -0.18958836] Endgültiger Bias: 0.9 === Wahrheitstabelle 13: Targets = (1, 1, 0, 0) === Epoch 1 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 1 Iterationen zurückzusetzen. Anzahl der Versuche: 1 Epoch 2 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 2 Iterationen zurückzusetzen. Anzahl der Versuche: 2 Epoch 3 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 3 Iterationen zurückzusetzen. Anzahl der Versuche: 3 Epoch 4 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 4 Iterationen zurückzusetzen. Anzahl der Versuche: 4 Epoch 5 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 5 Iterationen zurückzusetzen. Anzahl der Versuche: 5 Das Netzwerk hat Wahrheitstabelle 13 nach 5 Iterationen nicht korrekt gelernt. Erhöhe den Bias und versuche es erneut. Versuch mit Bias 0.1: Versuch mit Bias 0.2: Versuch mit Bias 0.30000000000000004: Versuch mit Bias 0.4: Versuch mit Bias 0.5: Versuch mit Bias 0.6: Versuch mit Bias 0.7000000000000001: Versuch mit Bias 0.8: Versuch mit Bias 0.9: Total Iterationen: 17 Startgewichte: [2.45632948 0.404651 ] Endgewichte: [1.24250224 0.27465822] Endgültiger Bias: 0.9 Das Netzwerk hat Wahrheitstabelle 13 erfolgreich gelernt! Startgewichte: [2.45632948 0.404651 ] Endgewichte: [1.24250224 0.27465822] Endgültiger Bias: 0.9 === Wahrheitstabelle 14: Targets = (1, 1, 0, 1) === Epoch 1 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 1 Iterationen zurückzusetzen. Anzahl der Versuche: 1 Epoch 2 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 2 Iterationen zurückzusetzen. Anzahl der Versuche: 2 Epoch 3 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 3 Iterationen zurückzusetzen. Anzahl der Versuche: 3 Epoch 4 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 4 Iterationen zurückzusetzen. Anzahl der Versuche: 4 Epoch 5 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 5 Iterationen zurückzusetzen. Anzahl der Versuche: 5 Das Netzwerk hat Wahrheitstabelle 14 nach 5 Iterationen nicht korrekt gelernt. Erhöhe den Bias und versuche es erneut. Versuch mit Bias 0.1: Versuch mit Bias 0.2: Versuch mit Bias 0.30000000000000004: Versuch mit Bias 0.4: Versuch mit Bias 0.5: Versuch mit Bias 0.6: Versuch mit Bias 0.7000000000000001: Versuch mit Bias 0.8: Versuch mit Bias 0.9: Versuch mit Bias 1.0: Versuch mit Bias 1.1: Total Iterationen: 327 Startgewichte: [3.44808013 0.13309169] Endgewichte: [ 0.12245981 -0.1376551 ] Endgültiger Bias: 1.1 Das Netzwerk hat Wahrheitstabelle 14 erfolgreich gelernt! Startgewichte: [3.44808013 0.13309169] Endgewichte: [ 0.12245981 -0.1376551 ] Endgültiger Bias: 1.1 === Wahrheitstabelle 15: Targets = (1, 1, 1, 0) === Epoch 1 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 1 Iterationen zurückzusetzen. Anzahl der Versuche: 1 Epoch 2 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 2 Iterationen zurückzusetzen. Anzahl der Versuche: 2 Epoch 3 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 3 Iterationen zurückzusetzen. Anzahl der Versuche: 3 Epoch 4 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 4 Iterationen zurückzusetzen. Anzahl der Versuche: 4 Epoch 5 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 5 Iterationen zurückzusetzen. Anzahl der Versuche: 5 Das Netzwerk hat Wahrheitstabelle 15 nach 5 Iterationen nicht korrekt gelernt. Erhöhe den Bias und versuche es erneut. Versuch mit Bias 0.1: Versuch mit Bias 0.2: Versuch mit Bias 0.30000000000000004: Versuch mit Bias 0.4: Versuch mit Bias 0.5: Versuch mit Bias 0.6: Versuch mit Bias 0.7000000000000001: Versuch mit Bias 0.8: Versuch mit Bias 0.9: Total Iterationen: 498 Startgewichte: [2.72417136 1.59654072] Endgewichte: [0.28882635 0.08577003] Endgültiger Bias: 0.9 Das Netzwerk hat Wahrheitstabelle 15 erfolgreich gelernt! Startgewichte: [2.72417136 1.59654072] Endgewichte: [0.28882635 0.08577003] Endgültiger Bias: 0.9 === Wahrheitstabelle 16: Targets = (1, 1, 1, 1) === Epoch 1 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 1 Iterationen zurückzusetzen. Anzahl der Versuche: 1 Epoch 2 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 2 Iterationen zurückzusetzen. Anzahl der Versuche: 2 Epoch 3 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 3 Iterationen zurückzusetzen. Anzahl der Versuche: 3 Epoch 4 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 4 Iterationen zurückzusetzen. Anzahl der Versuche: 4 Epoch 5 konnte die Tabelle nicht korrekt lernen. Versuche, die Gewichte nach 5 Iterationen zurückzusetzen. Anzahl der Versuche: 5 Das Netzwerk hat Wahrheitstabelle 16 nach 5 Iterationen nicht korrekt gelernt. Erhöhe den Bias und versuche es erneut. Versuch mit Bias 0.1: Versuch mit Bias 0.2: Versuch mit Bias 0.30000000000000004: Versuch mit Bias 0.4: Versuch mit Bias 0.5: Versuch mit Bias 0.6: Versuch mit Bias 0.7000000000000001: Versuch mit Bias 0.8: Versuch mit Bias 0.9: Total Iterationen: 324 Startgewichte: [ 0.19691168 -3.9224752 ] Endgewichte: [0.10418418 0.13191817] Endgültiger Bias: 0.9 Das Netzwerk hat Wahrheitstabelle 16 erfolgreich gelernt! Startgewichte: [ 0.19691168 -3.9224752 ] Endgewichte: [0.10418418 0.13191817] Endgültiger Bias: 0.9