fork download
  1. #include <iostream>
  2. #include <algorithm>
  3. #include <vector>
  4. #include <complex>
  5. #include <cmath>
  6. #include <random>
  7. #include <cassert>
  8.  
  9. using namespace std;
  10.  
  11. const int mod = 1e9 + 7;
  12.  
  13. struct mint {
  14. int n;
  15. mint(int n_ = 0) : n(n_) {}
  16. };
  17.  
  18. mint operator-(mint a) { return a.n == 0 ? 0 : mod - a.n; }
  19. mint operator+(mint a, mint b) { return (a.n += b.n) >= mod ? a.n - mod : a.n; }
  20. mint operator-(mint a, mint b) { return (a.n -= b.n) < 0 ? a.n + mod : a.n; }
  21. mint operator*(mint a, mint b) { return 1LL * a.n * b.n % mod; }
  22. mint &operator+=(mint &a, mint b) { return a = a + b; }
  23. mint &operator-=(mint &a, mint b) { return a = a - b; }
  24. mint &operator*=(mint &a, mint b) { return a = a * b; }
  25. ostream &operator<<(ostream &o, mint a) { return o << a.n; }
  26.  
  27. mint modpow(mint a, long long b) {
  28. mint res = 1;
  29. while (b > 0) {
  30. if (b & 1) res *= a;
  31. a *= a;
  32. b >>= 1;
  33. }
  34. return res;
  35. }
  36.  
  37. mint modinv(mint a) {
  38. return modpow(a, mod - 2);
  39. }
  40.  
  41. template<int N>
  42. struct FFT {
  43. complex<double> rots[N];
  44.  
  45. FFT() {
  46. const double pi = acos(-1);
  47. for (int i = 0; i < N / 2; i++) {
  48. rots[i + N / 2].real(cos(2 * pi / N * i));
  49. rots[i + N / 2].imag(sin(2 * pi / N * i));
  50. }
  51. for (int i = N / 2 - 1; i >= 1; i--) {
  52. rots[i] = rots[i * 2];
  53. }
  54. }
  55.  
  56. inline complex<double> mul(complex<double> a, complex<double> b) {
  57. return complex<double>(
  58. a.real() * b.real() - a.imag() * b.imag(),
  59. a.real() * b.imag() + a.imag() * b.real()
  60. );
  61. }
  62.  
  63. void fft(vector<complex<double>> &a, bool rev) {
  64. const int n = a.size();
  65. int i = 0;
  66. for (int j = 1; j < n - 1; j++) {
  67. for (int k = n >> 1; k > (i ^= k); k >>= 1);
  68. if (j < i) {
  69. swap(a[i], a[j]);
  70. }
  71. }
  72. for (int i = 1; i < n; i *= 2) {
  73. for (int j = 0; j < n; j += i * 2) {
  74. for (int k = 0; k < i; k++) {
  75. auto s = a[j + k + 0];
  76. auto t = mul(a[j + k + i], rots[i + k]);
  77. a[j + k + 0] = s + t;
  78. a[j + k + i] = s - t;
  79. }
  80. }
  81. }
  82. if (rev) {
  83. reverse(a.begin() + 1, a.end());
  84. for (int i = 0; i < n; i++) {
  85. a[i] *= 1.0 / n;
  86. }
  87. }
  88. }
  89.  
  90. vector<long long> convolution(vector<long long> a, vector<long long> b) {
  91. int t = 1;
  92. while (t < a.size() + b.size() - 1) t *= 2;
  93. vector<complex<double>> z(t);
  94. for (int i = 0; i < a.size(); i++) z[i].real(a[i]);
  95. for (int i = 0; i < b.size(); i++) z[i].imag(b[i]);
  96. fft(z, false);
  97. vector<complex<double>> w(t);
  98. for (int i = 0; i < t; i++) {
  99. auto p = (z[i] + conj(z[(t - i) % t])) * complex<double>(0.5, 0);
  100. auto q = (z[i] - conj(z[(t - i) % t])) * complex<double>(0, -0.5);
  101. w[i] = p * q;
  102. }
  103. fft(w, true);
  104. vector<long long> ans(a.size() + b.size() - 1);
  105. for (int i = 0; i < ans.size(); i++) {
  106. ans[i] = round(w[i].real());
  107. }
  108. return ans;
  109. }
  110.  
  111. vector<mint> convolution(vector<mint> a, vector<mint> b) {
  112. int t = 1;
  113. while (t < a.size() + b.size() - 1) t *= 2;
  114. vector<complex<double>> A(t), B(t);
  115. for (int i = 0; i < a.size(); i++) A[i] = complex<double>(a[i].n & 0x7fff, a[i].n >> 15);
  116. for (int i = 0; i < b.size(); i++) B[i] = complex<double>(b[i].n & 0x7fff, b[i].n >> 15);
  117. fft(A, false);
  118. fft(B, false);
  119. vector<complex<double>> C(t), D(t);
  120. for (int i = 0; i < t; i++) {
  121. int j = (t - i) % t;
  122. auto AL = (A[i] + conj(A[j])) * complex<double>(0.5, 0);
  123. auto AH = (A[i] - conj(A[j])) * complex<double>(0, -0.5);
  124. auto BL = (B[i] + conj(B[j])) * complex<double>(0.5, 0);
  125. auto BH = (B[i] - conj(B[j])) * complex<double>(0, -0.5);
  126. C[i] = AL * BL + AH * BL * complex<double>(0, 1);
  127. D[i] = AL * BH + AH * BH * complex<double>(0, 1);
  128. }
  129. fft(C, true);
  130. fft(D, true);
  131. vector<mint> ans(a.size() + b.size() - 1);
  132. for (int i = 0; i < ans.size(); i++) {
  133. long long l = (long long)round(C[i].real()) % mod;
  134. long long m = ((long long)round(C[i].imag()) + (long long)round(D[i].real())) % mod;
  135. long long h = (long long)round(D[i].imag()) % mod;
  136. ans[i] = (l + (m << 15) + (h << 30)) % mod;
  137. }
  138. return ans;
  139. }
  140. };
  141. FFT<1 << 21> fft;
  142.  
  143. typedef vector<mint> poly;
  144.  
  145. poly operator-(poly a) {
  146. for (int i = 0; i < a.size(); i++) {
  147. a[i] = -a[i];
  148. }
  149. return a;
  150. }
  151.  
  152. poly operator+(poly a, poly b) {
  153. for (int i = 0; i < a.size(); i++) {
  154. a[i] += b[i];
  155. }
  156. return a;
  157. }
  158.  
  159. poly operator-(poly a, poly b) {
  160. for (int i = 0; i < a.size(); i++) {
  161. a[i] -= b[i];
  162. }
  163. return a;
  164. }
  165.  
  166. poly &operator+=(poly &a, poly b) { return a = a + b; }
  167. poly &operator-=(poly &a, poly b) { return a = a - b; }
  168.  
  169. poly pinv(poly a) {
  170. const int n = a.size();
  171. poly x = {modinv(a[0])};
  172. for (int i = 1; i < n; i *= 2) {
  173. vector<mint> tmp(min(i * 2, n));
  174. for (int j = 0; j < tmp.size(); j++) {
  175. tmp[j] = a[j];
  176. }
  177. auto e = -fft.convolution(tmp, x);
  178. e[0] += 2;
  179. x = fft.convolution(x, e);
  180. x.resize(i * 2);
  181. }
  182. x.resize(n);
  183. return x;
  184. }
  185.  
  186. poly plog(poly a) {
  187. const int n = a.size();
  188. vector<mint> b(n);
  189. for (int i = 1; i < n; i++) {
  190. b[i - 1] = i * a[i];
  191. }
  192. a = fft.convolution(pinv(a), b);
  193. for (int i = n - 1; i >= 1; i--) {
  194. a[i] = modinv(i) * a[i - 1];
  195. }
  196. a[0] = 0;
  197. a.resize(n);
  198. return a;
  199. }
  200.  
  201. poly pexp(poly a) {
  202. const int n = a.size();
  203. poly x = {1};
  204. for (int i = 1; i < n; i *= 2) {
  205. auto e = -plog(x);
  206. e[0] += 1;
  207. e.resize(min(i * 2, n));
  208. for (int j = 0; j < e.size(); j++) {
  209. e[j] += a[j];
  210. }
  211. x = fft.convolution(x, e);
  212. x.resize(i * 2);
  213. }
  214. x.resize(n);
  215. return x;
  216. }
  217.  
  218.  
  219.  
  220.  
  221. vector<mint> partition(int n) {
  222. poly a(n);
  223. for (int i = 1; i < n; i++) {
  224. for (int j = 1; i * j < n; j++) {
  225. a[i * j] += modinv(j);
  226. }
  227. }
  228. return pexp(a);
  229. }
  230.  
  231. vector<mint> bell_polynomial(int n) {
  232. if (n == 0) return {1};
  233. poly a(n + 1);
  234. poly b(n + 1);
  235. a[0] = 1;
  236. mint f = 1;
  237. for (int i = 1; i <= n; i++) {
  238. f *= modinv(i);
  239. a[i] = i % 2 == 0 ? f : -f;
  240. b[i] = modpow(i, n) * f;
  241. }
  242. a = fft.convolution(a, b);
  243. a.resize(n + 1);
  244. return a;
  245. }
  246.  
  247.  
  248. int main() {
  249. cout << partition(1 << 18)[(1 << 18) - 1] << endl;
  250. }
  251.  
Success #stdin #stdout 1.14s 54696KB
stdin
Standard input is empty
stdout
591403914