<dl>
<dt><tspan class="blue_term">axiom</tspan> (ˈæksɪəm) <em>noun</em></dt>
<dt class = "numbering">1</dt>
<dd>a generally accepted proposition or principle, sanctioned by experience; maxim</dd>
<br/>
<dt class = "numbering">2</dt>
<dd>a universally established principle or law that is not a necessary truth: <em>the axioms of politics</em></dd>
<br/>
<dt class = "numbering">3</dt>
<dd>a self-evident statement.</dd>
<br/>
<dt class = "numbering">4</dt>
<dd
><em
>logic
</em
>, 
;<em
>maths
</em
> a statement or formula that is stipulated tp be
true for the purpose of a chain of reasoning
: the foundation of a formal deductive
system. 
; 
;Compare
<strong
>assumption
</strong
> 
;(sense
4)</dd
> <br/>
<dt class = "circle">∙ <strong>ETYMOLOGY</strong></dt>
<dd>C15: from Latin <em>axiōma</em> a principle, from Greek, from <em>axioun</em> to consider worthy, from <em>axios</em> worthy<a name = "referenced_material_i" href="#footnote_i">[1]</a>.</dd>
</dl>