<dl> <dt><tspan class="blue_term">axiom</tspan> (ˈæksɪəm) <em>noun</em></dt> <dt class = "numbering">1</dt> <dd>a generally accepted proposition or principle, sanctioned by experience; maxim</dd> <br/> <dt class = "numbering">2</dt> <dd>a universally established principle or law that is not a necessary truth: <em>the axioms of politics</em></dd> <br/> <dt class = "numbering">3</dt> <dd>a self-evident statement.</dd> <br/> <dt class = "numbering">4</dt> <dd><em>logic</em>, <em>maths</em> a statement or formula that is stipulated tp be true for the purpose of a chain of reasoning: the foundation of a formal deductive system. Compare <strong>assumption</strong> (sense 4)</dd> <br/> <dt class = "circle">∙ <strong>ETYMOLOGY</strong></dt> <dd>C15: from Latin <em>axiōma</em> a principle, from Greek, from <em>axioun</em> to consider worthy, from <em>axios</em> worthy<a name = "referenced_material_i" href="#footnote_i">[1]</a>.</dd> </dl>