from itertools import combinations
def is_subset_sum(list_input):
pos = []
for i in range(2, len(list_input) +1):
n = [list(x) for x in combinations(list_input, i)]
pos.append(n)
for combi in pos:
for i in combi:
res = 0
for x in i:
if x == 0:
return True
else:
res += x
if res == 0:
return True
return False
print(is_subset_sum([1, 2, 3]))
print(is_subset_sum([-5, -3, -1, 2, 4, 6]))
print(is_subset_sum([]))
print(is_subset_sum([-1, 1]))
print(is_subset_sum([-97364, -71561, -69336, 19675, 71561, 97863]))
print(is_subset_sum([-53974, -39140, -36561, -23935, -15680, 0]))
print('--------')
print(is_subset_sum([-83314, -82838, -80120, -63468, -62478, -59378, -56958, -50061, -34791, -32264, -21928, -14988, 23767, 24417, 26403, 26511, 36399, 78055]))
print(is_subset_sum([-92953, -91613, -89733, -50673, -16067, -9172, 8852, 30883, 46690, 46968, 56772, 58703, 59150, 78476, 84413, 90106, 94777, 95148]))
print(is_subset_sum([-94624, -86776, -85833, -80822, -71902, -54562, -38638, -26483, -20207, -1290, 12414, 12627, 19509, 30894, 32505, 46825, 50321, 69294]))
print(is_subset_sum([-83964, -81834, -78386, -70497, -69357, -61867, -49127, -47916, -38361, -35772, -29803, -15343, 6918, 19662, 44614, 66049, 93789, 95405]))
print(is_subset_sum([-68808, -58968, -45958, -36013, -32810, -28726, -13488, 3986, 26342, 29245, 30686, 47966, 58352, 68610, 74533, 77939, 80520, 87195]))
print('-------')
print(is_subset_sum([-97162, -95761, -94672, -87254, -57207, -22163, -20207, -1753, 11646, 13652, 14572, 30580, 52502, 64282, 74896, 83730, 89889, 92200]))
print(is_subset_sum([-93976, -93807, -64604, -59939, -44394, -36454, -34635, -16483, 267, 3245, 8031, 10622, 44815, 46829, 61689, 65756, 69220, 70121]))
print(is_subset_sum([-92474, -61685, -55348, -42019, -35902, -7815, -5579, 4490, 14778, 19399, 34202, 46624, 55800, 57719, 60260, 71511, 75665, 82754]))
print(is_subset_sum([-85029, -84549, -82646, -80493, -73373, -57478, -56711, -42456, -38923, -29277, -3685, -3164, 26863, 29890, 37187, 46607, 69300, 84808]))
print(is_subset_sum([-87565, -71009, -49312, -47554, -27197, 905, 2839, 8657, 14622, 32217, 35567, 38470, 46885, 59236, 64704, 82944, 86902, 90487]))
ZnJvbSBpdGVydG9vbHMgaW1wb3J0IGNvbWJpbmF0aW9ucwoKZGVmIGlzX3N1YnNldF9zdW0obGlzdF9pbnB1dCk6CiAgICBwb3MgPSBbXQoKICAgIGZvciBpIGluIHJhbmdlKDIsIGxlbihsaXN0X2lucHV0KSArMSk6CiAgICAgICAgbiA9IFtsaXN0KHgpIGZvciB4IGluIGNvbWJpbmF0aW9ucyhsaXN0X2lucHV0LCBpKV0KICAgICAgICBwb3MuYXBwZW5kKG4pCgogICAgZm9yIGNvbWJpIGluIHBvczoKICAgICAgICBmb3IgaSBpbiBjb21iaToKICAgICAgICAgICAgcmVzID0gMAogICAgICAgICAgICBmb3IgeCBpbiBpOgogICAgICAgICAgICAgICAgaWYgeCA9PSAwOgogICAgICAgICAgICAgICAgICAgIHJldHVybiBUcnVlCiAgICAgICAgICAgICAgICBlbHNlOgogICAgICAgICAgICAgICAgICAgIHJlcyArPSB4CiAgICAgICAgICAgIGlmIHJlcyA9PSAwOgogICAgICAgICAgICAgICAgcmV0dXJuIFRydWUKICAgIHJldHVybiBGYWxzZQoKcHJpbnQoaXNfc3Vic2V0X3N1bShbMSwgMiwgM10pKQpwcmludChpc19zdWJzZXRfc3VtKFstNSwgLTMsIC0xLCAyLCA0LCA2XSkpCnByaW50KGlzX3N1YnNldF9zdW0oW10pKQpwcmludChpc19zdWJzZXRfc3VtKFstMSwgMV0pKQpwcmludChpc19zdWJzZXRfc3VtKFstOTczNjQsIC03MTU2MSwgLTY5MzM2LCAxOTY3NSwgNzE1NjEsIDk3ODYzXSkpCnByaW50KGlzX3N1YnNldF9zdW0oWy01Mzk3NCwgLTM5MTQwLCAtMzY1NjEsIC0yMzkzNSwgLTE1NjgwLCAwXSkpCnByaW50KCctLS0tLS0tLScpCnByaW50KGlzX3N1YnNldF9zdW0oWy04MzMxNCwgLTgyODM4LCAtODAxMjAsIC02MzQ2OCwgLTYyNDc4LCAtNTkzNzgsIC01Njk1OCwgLTUwMDYxLCAtMzQ3OTEsIC0zMjI2NCwgLTIxOTI4LCAtMTQ5ODgsIDIzNzY3LCAyNDQxNywgMjY0MDMsIDI2NTExLCAzNjM5OSwgNzgwNTVdKSkKcHJpbnQoaXNfc3Vic2V0X3N1bShbLTkyOTUzLCAtOTE2MTMsIC04OTczMywgLTUwNjczLCAtMTYwNjcsIC05MTcyLCA4ODUyLCAzMDg4MywgNDY2OTAsIDQ2OTY4LCA1Njc3MiwgNTg3MDMsIDU5MTUwLCA3ODQ3NiwgODQ0MTMsIDkwMTA2LCA5NDc3NywgOTUxNDhdKSkKcHJpbnQoaXNfc3Vic2V0X3N1bShbLTk0NjI0LCAtODY3NzYsIC04NTgzMywgLTgwODIyLCAtNzE5MDIsIC01NDU2MiwgLTM4NjM4LCAtMjY0ODMsIC0yMDIwNywgLTEyOTAsIDEyNDE0LCAxMjYyNywgMTk1MDksIDMwODk0LCAzMjUwNSwgNDY4MjUsIDUwMzIxLCA2OTI5NF0pKQpwcmludChpc19zdWJzZXRfc3VtKFstODM5NjQsIC04MTgzNCwgLTc4Mzg2LCAtNzA0OTcsIC02OTM1NywgLTYxODY3LCAtNDkxMjcsIC00NzkxNiwgLTM4MzYxLCAtMzU3NzIsIC0yOTgwMywgLTE1MzQzLCA2OTE4LCAxOTY2MiwgNDQ2MTQsIDY2MDQ5LCA5Mzc4OSwgOTU0MDVdKSkKcHJpbnQoaXNfc3Vic2V0X3N1bShbLTY4ODA4LCAtNTg5NjgsIC00NTk1OCwgLTM2MDEzLCAtMzI4MTAsIC0yODcyNiwgLTEzNDg4LCAzOTg2LCAyNjM0MiwgMjkyNDUsIDMwNjg2LCA0Nzk2NiwgNTgzNTIsIDY4NjEwLCA3NDUzMywgNzc5MzksIDgwNTIwLCA4NzE5NV0pKQpwcmludCgnLS0tLS0tLScpCnByaW50KGlzX3N1YnNldF9zdW0oWy05NzE2MiwgLTk1NzYxLCAtOTQ2NzIsIC04NzI1NCwgLTU3MjA3LCAtMjIxNjMsIC0yMDIwNywgLTE3NTMsIDExNjQ2LCAxMzY1MiwgMTQ1NzIsIDMwNTgwLCA1MjUwMiwgNjQyODIsIDc0ODk2LCA4MzczMCwgODk4ODksIDkyMjAwXSkpCnByaW50KGlzX3N1YnNldF9zdW0oWy05Mzk3NiwgLTkzODA3LCAtNjQ2MDQsIC01OTkzOSwgLTQ0Mzk0LCAtMzY0NTQsIC0zNDYzNSwgLTE2NDgzLCAyNjcsIDMyNDUsIDgwMzEsIDEwNjIyLCA0NDgxNSwgNDY4MjksIDYxNjg5LCA2NTc1NiwgNjkyMjAsIDcwMTIxXSkpCnByaW50KGlzX3N1YnNldF9zdW0oWy05MjQ3NCwgLTYxNjg1LCAtNTUzNDgsIC00MjAxOSwgLTM1OTAyLCAtNzgxNSwgLTU1NzksIDQ0OTAsIDE0Nzc4LCAxOTM5OSwgMzQyMDIsIDQ2NjI0LCA1NTgwMCwgNTc3MTksIDYwMjYwLCA3MTUxMSwgNzU2NjUsIDgyNzU0XSkpCnByaW50KGlzX3N1YnNldF9zdW0oWy04NTAyOSwgLTg0NTQ5LCAtODI2NDYsIC04MDQ5MywgLTczMzczLCAtNTc0NzgsIC01NjcxMSwgLTQyNDU2LCAtMzg5MjMsIC0yOTI3NywgLTM2ODUsIC0zMTY0LCAyNjg2MywgMjk4OTAsIDM3MTg3LCA0NjYwNywgNjkzMDAsIDg0ODA4XSkpCnByaW50KGlzX3N1YnNldF9zdW0oWy04NzU2NSwgLTcxMDA5LCAtNDkzMTIsIC00NzU1NCwgLTI3MTk3LCA5MDUsIDI4MzksIDg2NTcsIDE0NjIyLCAzMjIxNywgMzU1NjcsIDM4NDcwLCA0Njg4NSwgNTkyMzYsIDY0NzA0LCA4Mjk0NCwgODY5MDIsIDkwNDg3XSkp