#include <cstddef>
#include <iostream>
#include <vector>
#include <algorithm>
typedef std::size_t index_t;
typedef double element_t;
typedef std::vector<element_t> row_t;
typedef std::vector<row_t> slice_t;
typedef std::vector<slice_t> array_3d_t;
// for one dimension
template<class T>
void fftshift_dimension(std::vector<T>& row)
{
using std::swap;
const index_t size = row.size();
if(size <= 1)
return;
const index_t halved_size = size / 2;
//swap the two halves
for(index_t i = 0, j = size - halved_size ; i < halved_size ; ++i, ++j)
swap(row[i], row[j]);
// if the size is odd, rotate the right part
if(size % 2)
{
swap(row[halved_size], row[size - 1]);
const index_t n = size - 2;
for(index_t i = halved_size ; i < n ; ++i)
swap(row[i], row[i + 1]);
}
}
// base case
template<class T>
void fftshift(std::vector<T>& array) {
fftshift_dimension(array);
}
// reduce the problem for a dimension N+1 to a dimension N
template<class T>
void fftshift(std::vector<std::vector<T>>& array) {
fftshift_dimension(array);
for(auto& slice : array)
fftshift(slice);
}
// overloads operator<< to print a 3-dimensional array
std::ostream& operator<<(std::ostream& output, const array_3d_t& input) {
const index_t width = input.size();
for(index_t i = 0; i < width ; i++)
{
const index_t height = input[i].size();
for(index_t j = 0; j < height ; j++)
{
const index_t depth = input[i][j].size();
for(index_t k = 0; k < depth; k++)
output << input[i][j][k] << ' ';
output << '\n';
}
output << '\n';
}
return output;
}
int main()
{
constexpr index_t width = 3;
constexpr index_t height = 4;
constexpr index_t depth = 5;
array_3d_t input(width, slice_t(height, row_t(depth)));
// initialization
for(index_t i = 0 ; i < width ; ++i)
for(index_t j = 0 ; j < height ; ++j)
for(index_t k = 0 ; k < depth ; ++k)
input[i][j][k] = i + j + k;
std::cout << input;
// in place fftshift
fftshift(input);
std::cout << "and then" << '\n' << input;
}