; Count the operands in your DSL
; ------------------------------
; The Little Lisper 3rd Edition
; Chapter 7
; Exercise 4
; Common Lisp
; http://t...content-available-to-author-only...r.com/thelittlelisper
; http://t...content-available-to-author-only...t.com/2010/06/little-lisper-chapter-7-shadows.html
; http://t...content-available-to-author-only...t.com/2010/06/little-lisper.html
; ------------------------------
(setf l1 '())
(setf l2 '(3 + (66 6)))
(setf aexp1 '(1 + (3 * 4)))
(setf aexp2 '((3 ^ 4) + 5))
(setf aexp3 '(3 * (4 * (5 * 6))))
(setf aexp4 5)
; ------------------------------
(defun sub1 (n)
(- n 1))
(defun operator (aexp_)
(car (cdr aexp_)))
(print (operator '(1 + 2)))
;+
(defun isoperator (a)
(cond
((null a) NIL)
((eq a '+) t)
((eq a '*) t)
((eq a '^) t)
(t NIL)))
(print (isoperator '^))
;T
(defun 1st-sub-expr (aexp_)
(car aexp_))
(print (1st-sub-expr '(1 + 2)))
;1
(defun 2nd-sub-expr (aexp_)
(car (cdr (cdr aexp_))))
(print (2nd-sub-expr '(1 + 2)))
;2
(defun number_ (n)
(cond
((null n) t)
(t (and
(null (car n))
(number_ (cdr n))))))
(defun notatom (lat)
(not (atom lat)))
(defun number__ (n)
(cond
((null n) nil)
((notatom n) nil)
((= 0 n) t)
(t (number__ (sub1 n)))))
(defun count-numbers (aexp_)
(cond
((null aexp_) 0)
((number__ aexp_) 1)
((isoperator (operator aexp_))
(+
(count-numbers (1st-sub-expr aexp_))
(count-numbers (2nd-sub-expr aexp_))))
(t 0)))
(print (count-numbers '(1 + 2)))
;2
(print (count-numbers aexp1))
;3
(print (count-numbers aexp3))
;4
(print (count-numbers aexp4))
;1