fork(8) download
  1. from itertools import product, izip
  2. from collections import namedtuple
  3.  
  4. Bounty = namedtuple('Bounty', 'name value weight volume')
  5.  
  6. # "namedtuple" is only available in Python 2.6+; for earlier versions use this instead:
  7. # class Bounty:
  8. # def __init__(self, name, value, weight, volume):
  9. # self.name = name
  10. # self.value = value
  11. # self.weight = weight
  12. # self.volume = volume
  13.  
  14. sack = Bounty('sack', 0, 25, 42)
  15.  
  16. items = [Bounty('panacea', 3000, 3, 25),
  17. Bounty('ichor', 1800, 2, 15),
  18. Bounty('gold', 2500, 20, 2)]
  19.  
  20.  
  21. def tot_value(items_count, items, sack):
  22. """
  23. Given the count of each item in the sack return -1 if they can't be carried or their total value.
  24.  
  25. (also return the negative of the weight and the volume so taking the max of a series of return
  26. values will minimise the weight if values tie, and minimise the volume if values and weights tie).
  27. """
  28. weight = sum(n * item.weight for n, item in izip(items_count, items))
  29. volume = sum(n * item.volume for n, item in izip(items_count, items))
  30. if weight <= sack.weight and volume <= sack.volume:
  31. return sum(n * item.value for n, item in izip(items_count, items)), -weight, -volume
  32. else:
  33. return -1, 0, 0
  34.  
  35.  
  36. def knapsack_dp(items, sack):
  37. if(sum(item.weight for item in items) <= sack.weight
  38. and sum(item.volume for item in items) <= sack.volume):
  39. return [1] * len(items)
  40.  
  41. table = [[0] * (sack.volume + 1) for i in xrange(sack.weight + 1)]
  42.  
  43. for item in items:
  44. for w in reversed(xrange(sack.weight + 1)):
  45. for v in reversed(xrange(sack.volume + 1)):
  46. if w >= item.weight and v >= item.volume:
  47. table[w][v] = max(table[w][v], table[w - item.weight][v - item.volume] + item.value)
  48.  
  49. # Backtrack through matrix to re-construct optimum:
  50. result = [0] * len(items)
  51. w = sack.weight
  52. v = sack.volume
  53. print table[w][v]
  54. while table[w][v]:
  55. # Find the last item that was added:
  56. aux = [table[w-item.weight][v-item.volume] + item.value for item in items]
  57. i = aux.index(table[w][v])
  58.  
  59. # Record it in the result, and remove it:
  60. result[i] = 1
  61. w -= items[i].weight
  62. v -= items[i].volume
  63.  
  64. return result
  65.  
  66.  
  67. max_items = knapsack_dp(items, sack)
  68. max_value, max_weight, max_volume = tot_value(max_items, items, sack)
  69. max_weight = -max_weight
  70. max_volume = -max_volume
  71.  
  72. print "The maximum value achievable (by exhaustive search) is %g." % max_value
  73. item_names = ", ".join(item.name for item in items)
  74. print " The number of %s items to achieve this is: %s, respectively." % (item_names, max_items)
  75. print " The weight to carry is %.3g, and the volume used is %.3g." % (max_weight, max_volume)
Success #stdin #stdout 0.02s 9128KB
stdin
Standard input is empty
stdout
The maximum value achievable (by exhaustive search) is 7300.
  The number of panacea, ichor, gold items to achieve this is: [1, 1, 1], respectively.
  The weight to carry is 25, and the volume used is 42.