# your code goes here
n1 <- 200
rep = 10
result1 = matrix(NA, rep, 5)
result2 = matrix(NA, rep, 5)
result3 = matrix(NA, rep, 5)
result4 = matrix(NA, rep, 5)
total = 0
set.seed(888)
for (i in 1 : rep){
mydata <- simulateData(popmodel3.5,sample.nobs=n1)
fit1 <- cfa(mismodel1.5, data = mydata, std.lv = T)
fit2 <- cfa(mismodel2.5, data = mydata, std.lv = T)
fit3 <- cfa(truemodel3.5, data = mydata, std.lv = T)
fit4 <- cfa(mismodel4.5, data = mydata, std.lv = T)
fit5 <- cfa(mismodel5.5, data = mydata, std.lv = T)
if(
fit1@Fit@converged == 'TRUE' &&
min(eigen(fit1@Model@GLIST$theta)$values) > 0 &&
min(eigen(fit1@Model@GLIST$psi)$values) > 0 &&
min(eigen(inspect(fit1,"cov.ov"))$values) > 0 &&
fit2@Fit@converged == 'TRUE' &&
min(eigen(fit2@Model@GLIST$theta)$values) > 0 &&
min(eigen(fit2@Model@GLIST$psi)$values) > 0 &&
min(eigen(inspect(fit2,"cov.ov"))$values) > 0 &&
fit3@Fit@converged == 'TRUE' &&
min(eigen(fit3@Model@GLIST$theta)$values) > 0 &&
min(eigen(fit3@Model@GLIST$psi)$values) > 0 &&
min(eigen(inspect(fit3,"cov.ov"))$values) > 0 &&
fit4@Fit@converged == 'TRUE' &&
min(eigen(fit4@Model@GLIST$theta)$values) > 0 &&
min(eigen(fit4@Model@GLIST$psi)$values) > 0 &&
min(eigen(inspect(fit4,"cov.ov"))$values) > 0 &&
fit5@Fit@converged == 'TRUE' &&
min(eigen(fit5@Model@GLIST$theta)$values) > 0 &&
min(eigen(fit5@Model@GLIST$psi)$values) > 0 &&
min(eigen(inspect(fit5,"cov.ov"))$values) > 0 ){
for(n in 1 : 5){
z <- paste("fit", n, sep = "")
z <- fi
result1[i, n] <- fitmeasures(z, c("ecvi"))
result2[i, n] <- fitmeasures(z, c("aic"))
result3[i, n] <- fitmeasures(z, c("bic"))
result4[i, n] <- fitmeasures(z, c("bic2"))
}
}
else{
total = total + i
}
}
IyB5b3VyIGNvZGUgZ29lcyBoZXJlCm4xIDwtIDIwMApyZXAgPSAxMApyZXN1bHQxID0gbWF0cml4KE5BLCByZXAsIDUpCnJlc3VsdDIgPSBtYXRyaXgoTkEsIHJlcCwgNSkKcmVzdWx0MyA9IG1hdHJpeChOQSwgcmVwLCA1KQpyZXN1bHQ0ID0gbWF0cml4KE5BLCByZXAsIDUpCnRvdGFsID0gMApzZXQuc2VlZCg4ODgpCgpmb3IgKGkgaW4gMSA6IHJlcCl7CiAgICAgICAgbXlkYXRhIDwtIHNpbXVsYXRlRGF0YShwb3Btb2RlbDMuNSxzYW1wbGUubm9icz1uMSkKICAgICAgICBmaXQxIDwtIGNmYShtaXNtb2RlbDEuNSwgZGF0YSA9IG15ZGF0YSwgc3RkLmx2ID0gVCkKICAgICAgICBmaXQyIDwtIGNmYShtaXNtb2RlbDIuNSwgZGF0YSA9IG15ZGF0YSwgc3RkLmx2ID0gVCkKICAgICAgICBmaXQzIDwtIGNmYSh0cnVlbW9kZWwzLjUsIGRhdGEgPSBteWRhdGEsIHN0ZC5sdiA9IFQpCiAgICAgICAgZml0NCA8LSBjZmEobWlzbW9kZWw0LjUsIGRhdGEgPSBteWRhdGEsIHN0ZC5sdiA9IFQpCiAgICAgICAgZml0NSA8LSBjZmEobWlzbW9kZWw1LjUsIGRhdGEgPSBteWRhdGEsIHN0ZC5sdiA9IFQpCiAgICAgICAgaWYoCiAgICAgICAgICAgICAgICBmaXQxQEZpdEBjb252ZXJnZWQgPT0gJ1RSVUUnICYmIAogICAgICAgICAgICAgICAgbWluKGVpZ2VuKGZpdDFATW9kZWxAR0xJU1QkdGhldGEpJHZhbHVlcykgPiAwICYmCiAgICAgICAgICAgICAgICBtaW4oZWlnZW4oZml0MUBNb2RlbEBHTElTVCRwc2kpJHZhbHVlcykgPiAwICYmCiAgICAgICAgICAgICAgICBtaW4oZWlnZW4oaW5zcGVjdChmaXQxLCJjb3Yub3YiKSkkdmFsdWVzKSA+IDAgJiYKICAgICAgICAgICAgICAgIGZpdDJARml0QGNvbnZlcmdlZCA9PSAnVFJVRScgJiYKICAgICAgICAgICAgICAgIG1pbihlaWdlbihmaXQyQE1vZGVsQEdMSVNUJHRoZXRhKSR2YWx1ZXMpID4gMCAmJgogICAgICAgICAgICAgICAgbWluKGVpZ2VuKGZpdDJATW9kZWxAR0xJU1QkcHNpKSR2YWx1ZXMpID4gMCAmJgogICAgICAgICAgICAgICAgbWluKGVpZ2VuKGluc3BlY3QoZml0MiwiY292Lm92IikpJHZhbHVlcykgPiAwICYmCiAgICAgICAgICAgICAgICBmaXQzQEZpdEBjb252ZXJnZWQgPT0gJ1RSVUUnICYmCiAgICAgICAgICAgICAgICBtaW4oZWlnZW4oZml0M0BNb2RlbEBHTElTVCR0aGV0YSkkdmFsdWVzKSA+IDAgJiYKICAgICAgICAgICAgICAgIG1pbihlaWdlbihmaXQzQE1vZGVsQEdMSVNUJHBzaSkkdmFsdWVzKSA+IDAgJiYKICAgICAgICAgICAgICAgIG1pbihlaWdlbihpbnNwZWN0KGZpdDMsImNvdi5vdiIpKSR2YWx1ZXMpID4gMCAmJiAgICAgICAgCiAgICAgICAgICAgICAgICBmaXQ0QEZpdEBjb252ZXJnZWQgPT0gJ1RSVUUnICYmCiAgICAgICAgICAgICAgICBtaW4oZWlnZW4oZml0NEBNb2RlbEBHTElTVCR0aGV0YSkkdmFsdWVzKSA+IDAgJiYKICAgICAgICAgICAgICAgIG1pbihlaWdlbihmaXQ0QE1vZGVsQEdMSVNUJHBzaSkkdmFsdWVzKSA+IDAgJiYKICAgICAgICAgICAgICAgIG1pbihlaWdlbihpbnNwZWN0KGZpdDQsImNvdi5vdiIpKSR2YWx1ZXMpID4gMCAmJiAgCiAgICAgICAgICAgICAgICBmaXQ1QEZpdEBjb252ZXJnZWQgPT0gJ1RSVUUnICYmCiAgICAgICAgICAgICAgICBtaW4oZWlnZW4oZml0NUBNb2RlbEBHTElTVCR0aGV0YSkkdmFsdWVzKSA+IDAgJiYKICAgICAgICAgICAgICAgIG1pbihlaWdlbihmaXQ1QE1vZGVsQEdMSVNUJHBzaSkkdmFsdWVzKSA+IDAgJiYKICAgICAgICAgICAgICAgIG1pbihlaWdlbihpbnNwZWN0KGZpdDUsImNvdi5vdiIpKSR2YWx1ZXMpID4gMCApewogICAgICAgICAgICAgICAgZm9yKG4gaW4gMSA6IDUpewogICAgICAgICAgICAgICAgICAgICAgICB6IDwtIHBhc3RlKCJmaXQiLCBuLCBzZXAgPSAiIikKICAgICAgICAgICAgICAgICAgICAgICAgeiA8LSBmaQogICAgICAgICAgICAgICAgICAgICAgICByZXN1bHQxW2ksIG5dIDwtIGZpdG1lYXN1cmVzKHosIGMoImVjdmkiKSkKICAgICAgICAgICAgICAgICAgICAgICAgcmVzdWx0MltpLCBuXSA8LSBmaXRtZWFzdXJlcyh6LCBjKCJhaWMiKSkKICAgICAgICAgICAgICAgICAgICAgICAgcmVzdWx0M1tpLCBuXSA8LSBmaXRtZWFzdXJlcyh6LCBjKCJiaWMiKSkgICAgCiAgICAgICAgICAgICAgICAgICAgICAgIHJlc3VsdDRbaSwgbl0gPC0gZml0bWVhc3VyZXMoeiwgYygiYmljMiIpKSAKICAgICAgICAgICAgICAgIH0KICAgICAgICAgICAgICAgIAogICAgICAgIH0KICAgICAgICBlbHNlewogICAgICAgICAgICAgICAgdG90YWwgPSB0b3RhbCArIGkKICAgICAgICB9Cn0=